Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HermiteH






Mathematica Notation

Traditional Notation









Polynomials > HermiteH[n,z] > Summation > Infinite summation





http://functions.wolfram.com/05.01.23.0019.01









  


  










Input Form





Sum[((b k + 1)^((k - 2)/2)/k!) ((-t) E^(b t^2 + 2 a z t))^k HermiteH[k, ((a k + 1)/Sqrt[b k + 1]) z], {k, 0, Infinity}] == E^(-t^2 - 2 z t) Hypergeometric1F1[1, (b + 1)/b, (2 z t (b - a))/b] /; Abs[2 a t z E^(b t^2 + 2 a t z + 1)] < 1










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["b", " ", "k"]], "+", "1"]], ")"]], FractionBox[RowBox[List["k", "-", "2"]], "2"]], RowBox[List["k", "!"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "t"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["b", " ", SuperscriptBox["t", "2"]]], "+", RowBox[List["2", " ", "a", " ", "z", " ", "t"]]]]]]], ")"]], "k"], " ", RowBox[List["HermiteH", "[", RowBox[List["k", ",", RowBox[List[FractionBox[RowBox[List[" ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", "k"]], "+", "1"]], ")"]]]], SqrtBox[RowBox[List[RowBox[List["b", " ", "k"]], "+", "1"]]]], "z"]]]], "]"]]]]]], "\[Equal]", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", SuperscriptBox["t", "2"]]], "-", RowBox[List["2", " ", "z", " ", "t"]]]]], " ", RowBox[List["Hypergeometric1F1", "[", RowBox[List["1", ",", FractionBox[RowBox[List["b", "+", "1"]], "b"], ",", FractionBox[RowBox[List["2", " ", "z", " ", "t", " ", RowBox[List["(", RowBox[List["b", "-", "a"]], ")"]]]], "b"]]], "]"]]]]]], "/;", RowBox[List[RowBox[List["Abs", "[", RowBox[List["2", "a", " ", "t", " ", "z", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["b", " ", SuperscriptBox["t", "2"]]], "+", RowBox[List["2", "a", " ", "t", " ", "z"]], "+", "1"]]]]], "]"]], "<", "1"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mfrac> <mrow> <mi> k </mi> <mo> - </mo> <mn> 2 </mn> </mrow> <mn> 2 </mn> </mfrac> </msup> <mtext> </mtext> </mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> t </mi> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> t </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mi> t </mi> </mrow> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <mrow> <msub> <mi> H </mi> <mi> k </mi> </msub> <mo> ( </mo> <mrow> <mfrac> <mrow> <mtext> </mtext> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <msqrt> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mfrac> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <msup> <mi> t </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mi> t </mi> </mrow> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> ; </mo> <mfrac> <mrow> <mi> b </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mi> b </mi> </mfrac> <mo> ; </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mi> t </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mi> b </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;1&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[TagBox[&quot;1&quot;, Hypergeometric1F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric1F1, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[FractionBox[RowBox[List[&quot;b&quot;, &quot;+&quot;, &quot;1&quot;]], &quot;b&quot;], Hypergeometric1F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric1F1, Rule[Editable, False]], &quot;;&quot;, TagBox[FractionBox[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;z&quot;, &quot; &quot;, &quot;t&quot;, &quot; &quot;, RowBox[List[&quot;(&quot;, RowBox[List[&quot;b&quot;, &quot;-&quot;, &quot;a&quot;]], &quot;)&quot;]]]], &quot;b&quot;], Hypergeometric1F1, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric1F1] </annotation> </semantics> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> t </mi> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> t </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mi> t </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &lt; </mo> <mn> 1 </mn> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> b </ci> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <apply> <plus /> <ci> k </ci> <cn type='integer'> -2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <factorial /> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> t </ci> </apply> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> t </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <ci> z </ci> <ci> t </ci> </apply> </apply> </apply> </apply> <ci> k </ci> </apply> <apply> <ci> HermiteH </ci> <ci> k </ci> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> b </ci> <ci> k </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> t </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <ci> t </ci> </apply> </apply> </apply> </apply> <apply> <ci> Hypergeometric1F1 </ci> <cn type='integer'> 1 </cn> <apply> <times /> <apply> <plus /> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> <ci> t </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <lt /> <apply> <abs /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <ci> t </ci> <ci> z </ci> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> t </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <ci> z </ci> <ci> t </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k_", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["b_", " ", "k_"]], "+", "1"]], ")"]], FractionBox[RowBox[List["k_", "-", "2"]], "2"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "t_"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["b_", " ", SuperscriptBox["t_", "2"]]], "+", RowBox[List["2", " ", "a_", " ", "z_", " ", "t_"]]]]]]], ")"]], "k_"], " ", RowBox[List["HermiteH", "[", RowBox[List["k_", ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["a_", " ", "k_"]], "+", "1"]], ")"]], " ", "z_"]], SqrtBox[RowBox[List[RowBox[List["b_", " ", "k_"]], "+", "1"]]]]]], "]"]]]], RowBox[List["k_", "!"]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", SuperscriptBox["t", "2"]]], "-", RowBox[List["2", " ", "z", " ", "t"]]]]], " ", RowBox[List["Hypergeometric1F1", "[", RowBox[List["1", ",", FractionBox[RowBox[List["b", "+", "1"]], "b"], ",", FractionBox[RowBox[List["2", " ", "z", " ", "t", " ", RowBox[List["(", RowBox[List["b", "-", "a"]], ")"]]]], "b"]]], "]"]]]], "/;", RowBox[List[RowBox[List["Abs", "[", RowBox[List["2", " ", "a", " ", "t", " ", "z", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["b", " ", SuperscriptBox["t", "2"]]], "+", RowBox[List["2", " ", "a", " ", "t", " ", "z"]], "+", "1"]]]]], "]"]], "<", "1"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18





© 1998-2014 Wolfram Research, Inc.