Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
JacobiP






Mathematica Notation

Traditional Notation









Polynomials > JacobiP[n,a,b,z] > Series representations > Generalized power series > Expansions at generic point a==a0 > For the function itself





http://functions.wolfram.com/05.06.06.0021.01









  


  










Input Form





JacobiP[n, a, b, z] \[Proportional] JacobiP[n, Subscript[a, 0], b, z] + Sum[(1/(Subscript[a, 0] + b + k + n + 1)) (JacobiP[n, Subscript[a, 0], b, z] + (((Subscript[a, 0] + b + 1 + 2 k) Pochhammer[b + k + 1, n - k])/ ((n - k) Pochhammer[Subscript[a, 0] + b + k + 1, n - k])) JacobiP[k, Subscript[a, 0], b, z]) (a - Subscript[a, 0]), {k, 0, n - 1}] + \[Ellipsis] /; (a -> Subscript[a, 0])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["JacobiP", "[", RowBox[List["n", ",", "a", ",", "b", ",", "z"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List["JacobiP", "[", RowBox[List["n", ",", SubscriptBox["a", "0"], ",", "b", ",", "z"]], "]"]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", "1"]]], RowBox[List[FractionBox["1", RowBox[List[SubscriptBox["a", "0"], "+", "b", "+", "k", "+", "n", "+", "1"]]], RowBox[List["(", RowBox[List[RowBox[List["JacobiP", "[", RowBox[List["n", ",", SubscriptBox["a", "0"], ",", "b", ",", "z"]], "]"]], "+", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["a", "0"], "+", "b", "+", "1", "+", RowBox[List["2", " ", "k"]]]], ")"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["b", "+", "k", "+", "1"]], ",", RowBox[List["n", "-", "k"]]]], "]"]], " "]], RowBox[List[RowBox[List["(", RowBox[List["n", "-", "k"]], ")"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[SubscriptBox["a", "0"], "+", "b", "+", "k", "+", "1"]], ",", RowBox[List["n", "-", "k"]]]], "]"]]]]], RowBox[List["JacobiP", "[", RowBox[List["k", ",", SubscriptBox["a", "0"], ",", "b", ",", "z"]], "]"]]]]]], ")"]], RowBox[List["(", RowBox[List["a", "-", SubscriptBox["a", "0"]]], ")"]]]]]], "+", "\[Ellipsis]"]]]], "/;", RowBox[List["(", RowBox[List["a", "\[Rule]", SubscriptBox["a", "0"]]], ")"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <mi> P </mi> <mi> n </mi> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mrow> <msubsup> <mi> P </mi> <mi> n </mi> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 0 </mn> </msub> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> b </mi> <mo> + </mo> <mi> k </mi> <mo> + </mo> <mi> n </mi> <mo> + </mo> <msub> <mi> a </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msubsup> <mi> P </mi> <mi> n </mi> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 0 </mn> </msub> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mtext> </mtext> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <msub> <mi> a </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mi> k </mi> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;b&quot;, &quot;+&quot;, &quot;k&quot;, &quot;+&quot;, &quot;1&quot;]], &quot;)&quot;]], RowBox[List[&quot;n&quot;, &quot;-&quot;, &quot;k&quot;]]], Pochhammer] </annotation> </semantics> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> k </mi> <mo> + </mo> <msub> <mi> a </mi> <mn> 0 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mi> k </mi> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;b&quot;, &quot;+&quot;, &quot;k&quot;, &quot;+&quot;, SubscriptBox[&quot;a&quot;, &quot;0&quot;], &quot;+&quot;, &quot;1&quot;]], &quot;)&quot;]], RowBox[List[&quot;n&quot;, &quot;-&quot;, &quot;k&quot;]]], Pochhammer] </annotation> </semantics> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msubsup> <mi> P </mi> <mi> k </mi> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 0 </mn> </msub> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <msub> <mi> a </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> + </mo> <mo> &#8230; </mo> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <msub> <mi> a </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> JacobiP </ci> <ci> n </ci> <ci> a </ci> <ci> b </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <ci> JacobiP </ci> <ci> n </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> <ci> b </ci> <ci> z </ci> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <ci> b </ci> <ci> k </ci> <ci> n </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> JacobiP </ci> <ci> n </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> <ci> b </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> b </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> b </ci> <ci> k </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> JacobiP </ci> <ci> k </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> <ci> b </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> </apply> <ci> &#8230; </ci> </apply> </apply> <apply> <ci> Rule </ci> <ci> a </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["JacobiP", "[", RowBox[List["n_", ",", "a_", ",", "b_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["JacobiP", "[", RowBox[List["n", ",", SubscriptBox["aa", "0"], ",", "b", ",", "z"]], "]"]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", "1"]]], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["JacobiP", "[", RowBox[List["n", ",", SubscriptBox["aa", "0"], ",", "b", ",", "z"]], "]"]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["aa", "0"], "+", "b", "+", "1", "+", RowBox[List["2", " ", "k"]]]], ")"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["b", "+", "k", "+", "1"]], ",", RowBox[List["n", "-", "k"]]]], "]"]]]], ")"]], " ", RowBox[List["JacobiP", "[", RowBox[List["k", ",", SubscriptBox["aa", "0"], ",", "b", ",", "z"]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List["n", "-", "k"]], ")"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[SubscriptBox["aa", "0"], "+", "b", "+", "k", "+", "1"]], ",", RowBox[List["n", "-", "k"]]]], "]"]]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["a", "-", SubscriptBox["aa", "0"]]], ")"]]]], RowBox[List[SubscriptBox["aa", "0"], "+", "b", "+", "k", "+", "n", "+", "1"]]]]], "+", "\[Ellipsis]"]], "/;", RowBox[List["(", RowBox[List["a", "\[Rule]", SubscriptBox["aa", "0"]]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998-2014 Wolfram Research, Inc.