Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
JacobiP






Mathematica Notation

Traditional Notation









Polynomials > JacobiP[n,a,b,z] > Series representations > Generalized power series > Expansions at b==infinity





http://functions.wolfram.com/05.06.06.0020.01









  


  










Input Form





JacobiP[n, a, b, z] \[Proportional] (b^n/n!) ((z - 1)/2)^n (1 + (n (-1 + n + z + 3 n z + 2 a (1 + z)))/(2 b (-1 + z)) + (1/(24 b^2 (-1 + z)^2)) ((-1 + n) n (2 (-1 + z)^2 + 12 a^2 (1 + z)^2 + 3 (n + 3 n z)^2 + 12 a (1 + z) (-3 + n + z + 3 n z) + n (-31 + 17 (-2 + z) z))) + \[Ellipsis]) /; (Abs[b] -> Infinity)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["JacobiP", "[", RowBox[List["n", ",", "a", ",", "b", ",", "z"]], "]"]], "\[Proportional]", RowBox[List[FractionBox[SuperscriptBox["b", "n"], RowBox[List["n", "!"]]], SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["z", "-", "1"]], "2"], ")"]], "n"], RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["n", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "n", "+", "z", "+", RowBox[List["3", " ", "n", " ", "z"]], "+", RowBox[List["2", " ", "a", " ", RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]]]]]], ")"]]]], RowBox[List["2", " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]]]]], "+", RowBox[List[FractionBox["1", RowBox[List["24", " ", SuperscriptBox["b", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "2"]]]], RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "n"]], ")"]], " ", "n", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "2"]]], "+", RowBox[List["12", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], "2"]]], "+", RowBox[List["3", " ", SuperscriptBox[RowBox[List["(", RowBox[List["n", "+", RowBox[List["3", " ", "n", " ", "z"]]]], ")"]], "2"]]], "+", RowBox[List["12", " ", "a", " ", RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", "n", "+", "z", "+", RowBox[List["3", " ", "n", " ", "z"]]]], ")"]]]], "+", RowBox[List["n", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "31"]], "+", RowBox[List["17", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", "z"]], ")"]], " ", "z"]]]], ")"]]]]]], ")"]]]], ")"]]]], "+", "\[Ellipsis]"]], ")"]]]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "b", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <mi> P </mi> <mi> n </mi> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mfrac> <msup> <mi> b </mi> <mi> n </mi> </msup> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mrow> <mi> n </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mi> n </mi> <mo> + </mo> <mi> z </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mrow> <mn> 24 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 12 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 12 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mi> n </mi> <mo> + </mo> <mi> z </mi> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> n </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 17 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mn> 31 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mo> &#8230; </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> b </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mi> &#8734; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> JacobiP </ci> <ci> n </ci> <ci> a </ci> <ci> b </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <ci> b </ci> <ci> n </ci> </apply> <apply> <power /> <apply> <factorial /> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <ci> n </ci> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <ci> n </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> z </ci> <ci> n </ci> </apply> <ci> n </ci> <ci> z </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <ci> n </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 24 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> z </ci> <ci> n </ci> </apply> <ci> n </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 12 </cn> <ci> a </ci> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> z </ci> <ci> n </ci> </apply> <ci> n </ci> <ci> z </ci> <cn type='integer'> -3 </cn> </apply> </apply> <apply> <times /> <ci> n </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 17 </cn> <apply> <plus /> <ci> z </ci> <cn type='integer'> -2 </cn> </apply> <ci> z </ci> </apply> <cn type='integer'> -31 </cn> </apply> </apply> </apply> </apply> <ci> &#8230; </ci> </apply> </apply> </apply> <apply> <ci> Rule </ci> <apply> <abs /> <ci> b </ci> </apply> <infinity /> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["JacobiP", "[", RowBox[List["n_", ",", "a_", ",", "b_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["b", "n"], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["z", "-", "1"]], "2"], ")"]], "n"], " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List["n", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "n", "+", "z", "+", RowBox[List["3", " ", "n", " ", "z"]], "+", RowBox[List["2", " ", "a", " ", RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]]]]]], ")"]]]], RowBox[List["2", " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "n"]], ")"]], " ", "n", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "2"]]], "+", RowBox[List["12", " ", SuperscriptBox["a", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], "2"]]], "+", RowBox[List["3", " ", SuperscriptBox[RowBox[List["(", RowBox[List["n", "+", RowBox[List["3", " ", "n", " ", "z"]]]], ")"]], "2"]]], "+", RowBox[List["12", " ", "a", " ", RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "3"]], "+", "n", "+", "z", "+", RowBox[List["3", " ", "n", " ", "z"]]]], ")"]]]], "+", RowBox[List["n", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "31"]], "+", RowBox[List["17", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", "z"]], ")"]], " ", "z"]]]], ")"]]]]]], ")"]]]], RowBox[List["24", " ", SuperscriptBox["b", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], "2"]]]], "+", "\[Ellipsis]"]], ")"]]]], RowBox[List["n", "!"]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "b", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-03-07





© 1998- Wolfram Research, Inc.