Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
JacobiP






Mathematica Notation

Traditional Notation









Polynomials > JacobiP[n,a,b,z] > Differential equations > Ordinary linear differential equations and wronskians > For the direct function itself





http://functions.wolfram.com/05.06.13.0001.01









  


  










Input Form





(1 - z^2) Derivative[2][w][z] + (b - a - (a + b + 2) z) Derivative[1][w][z] + n (n + a + b + 1) w[z] == 0 /; w[z] == Subscript[c, 1] JacobiP[n, a, b, z] + (Subscript[c, 2] JacobiP[a + n, -a, b, z])/(1 - z)^a && !Element[a, Integers]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["z", "2"]]], ")"]], " ", RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["b", "-", "a", "-", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b", "+", "2"]], ")"]], " ", "z"]]]], ")"]], " ", RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], "+", RowBox[List["n", " ", RowBox[List["(", RowBox[List["n", "+", "a", "+", "b", "+", "1"]], ")"]], " ", RowBox[List["w", "[", "z", "]"]]]]]], "\[Equal]", "0"]], "/;", " ", RowBox[List[RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List[SubscriptBox["c", "1"], RowBox[List["JacobiP", "[", RowBox[List["n", ",", "a", ",", "b", ",", "z"]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "2"], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["-", "a"]]], RowBox[List["JacobiP", "[", RowBox[List[RowBox[List["a", "+", "n"]], ",", RowBox[List["-", "a"]], ",", "b", ",", "z"]], "]"]]]]]]]], "\[And]", RowBox[List["Not", "[", RowBox[List["a", "\[Element]", "Integers"]], "]"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> w </mi> <mi> &#8242;&#8242; </mi> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> w </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> n </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#955; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> w </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mn> 0 </mn> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mi> w </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mtext> </mtext> <mrow> <mrow> <msub> <mi> c </mi> <mn> 1 </mn> </msub> <mo> &#8290; </mo> <mrow> <msubsup> <mi> P </mi> <mi> n </mi> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mrow> <msub> <mi> c </mi> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <msubsup> <mi> P </mi> <mrow> <mi> a </mi> <mo> + </mo> <mi> n </mi> </mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mi> a </mi> <mo> &#8713; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[Integers]] </annotation> </semantics> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <plus /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <ci> n </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> &#955; </ci> </apply> </apply> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <and /> <apply> <eq /> <apply> <ci> w </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> c </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> JacobiP </ci> <ci> n </ci> <ci> a </ci> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <apply> <ci> Subscript </ci> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <ci> JacobiP </ci> <apply> <plus /> <ci> a </ci> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <ci> b </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <notin /> <ci> a </ci> <integers /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["z_", "2"]]], ")"]], " ", RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["b_", "-", "a_", "-", RowBox[List[RowBox[List["(", RowBox[List["a_", "+", "b_", "+", "2"]], ")"]], " ", "z_"]]]], ")"]], " ", RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "+", RowBox[List["n_", " ", RowBox[List["(", RowBox[List["n_", "+", "a_", "+", "b_", "+", "1"]], ")"]], " ", RowBox[List["w", "[", "z_", "]"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["0", "/;", RowBox[List[RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List[SubscriptBox["c", "1"], " ", RowBox[List["JacobiP", "[", RowBox[List["n", ",", "a", ",", "b", ",", "z"]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["-", "a"]]], " ", RowBox[List["JacobiP", "[", RowBox[List[RowBox[List["a", "+", "n"]], ",", RowBox[List["-", "a"]], ",", "b", ",", "z"]], "]"]]]]]]]], "&&", RowBox[List["!", RowBox[List["a", "\[Element]", "Integers"]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.