Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
LaguerreL






Mathematica Notation

Traditional Notation









Polynomials > LaguerreL[n,lambda,z] > Differential equations > Ordinary linear differential equations and wronskians > For the direct function itself





http://functions.wolfram.com/05.08.13.0017.01









  


  










Input Form





Wronskian[s^z LaguerreL[n, \[Lambda], a r^z], s^z MeijerG[{{}, {n + 1}}, {{0, -\[Lambda]}, {}}, (-a) r^z], z] == (a E^(a r^z) r^z ((-a) r^z)^(-1 - \[Lambda]) s^(2 z) Log[r])/n!










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["Wronskian", "[", " ", RowBox[List[RowBox[List[SuperscriptBox["s", "z"], " ", RowBox[List["LaguerreL", "[", RowBox[List["n", ",", "\[Lambda]", ",", RowBox[List["a", " ", SuperscriptBox["r", "z"]]]]], "]"]]]], ",", RowBox[List[SuperscriptBox["s", "z"], RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List["n", "+", "1"]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List["-", "\[Lambda]"]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List[RowBox[List["-", "a"]], " ", SuperscriptBox["r", "z"]]]]], "]"]]]], ",", "z"]], "]"]], "\[Equal]", FractionBox[RowBox[List["a", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["a", " ", SuperscriptBox["r", "z"]]]], " ", SuperscriptBox["r", "z"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], " ", SuperscriptBox["r", "z"]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "\[Lambda]"]]], " ", SuperscriptBox["s", RowBox[List["2", " ", "z"]]], " ", RowBox[List["Log", "[", "r", "]"]]]], RowBox[List["n", "!"]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msub> <mi> W </mi> <mi> z </mi> </msub> <mo> ( </mo> <mrow> <mrow> <msup> <mi> s </mi> <mi> z </mi> </msup> <mo> &#8290; </mo> <mrow> <msubsup> <mi> L </mi> <mi> n </mi> <mi> &#955; </mi> </msubsup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> r </mi> <mi> z </mi> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <msup> <mi> s </mi> <mi> z </mi> </msup> <mo> &#8290; </mo> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 2 </mn> </mrow> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> </msubsup> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> &#8290; </mo> <msup> <mi> r </mi> <mi> z </mi> </msup> </mrow> <mo> &#10072; </mo> <mtable> <mtr> <mtd> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 0 </mn> <mo> , </mo> <mrow> <mo> - </mo> <mi> &#955; </mi> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox[&quot;G&quot;, MeijerG], RowBox[List[&quot;1&quot;, &quot;,&quot;, &quot;2&quot;]], RowBox[List[&quot;2&quot;, &quot;,&quot;, &quot;0&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[RowBox[List[RowBox[List[&quot;-&quot;, &quot;a&quot;]], &quot; &quot;, SuperscriptBox[&quot;r&quot;, &quot;z&quot;]]], MeijerG, Rule[Editable, True], Rule[Selectable, True]], &quot;\[VerticalSeparator]&quot;, GridBox[List[List[TagBox[RowBox[List[&quot;n&quot;, &quot;+&quot;, &quot;1&quot;]], MeijerG, Rule[Editable, True], Rule[Selectable, True]]], List[RowBox[List[TagBox[&quot;0&quot;, MeijerG, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;-&quot;, &quot;\[Lambda]&quot;]], MeijerG, Rule[Editable, True], Rule[Selectable, True]]]]]]]]], &quot;)&quot;]]]], MeijerG, Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mfrac> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> r </mi> <mi> z </mi> </msup> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> r </mi> <mi> z </mi> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> &#8290; </mo> <msup> <mi> r </mi> <mi> z </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> &#955; </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> s </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> r </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> </mfrac> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <apply> <ci> Subscript </ci> <ci> W </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <power /> <ci> s </ci> <ci> z </ci> </apply> <apply> <ci> LaguerreL </ci> <ci> n </ci> <ci> &#955; </ci> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> r </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <ci> s </ci> <ci> z </ci> </apply> <apply> <ci> MeijerG </ci> <list> <list /> <list> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </list> </list> <list> <list> <cn type='integer'> 0 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#955; </ci> </apply> </list> <list /> </list> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <power /> <ci> r </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <ci> a </ci> <apply> <power /> <exponentiale /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> r </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <ci> r </ci> <ci> z </ci> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <power /> <ci> r </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#955; </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> s </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> <apply> <ln /> <ci> r </ci> </apply> <apply> <power /> <apply> <factorial /> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Wronskian", "[", RowBox[List[RowBox[List[SuperscriptBox["s_", "z_"], " ", RowBox[List["LaguerreL", "[", RowBox[List["n_", ",", "\[Lambda]_", ",", RowBox[List["a_", " ", SuperscriptBox["r_", "z_"]]]]], "]"]]]], ",", RowBox[List[SuperscriptBox["s_", "z_"], " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List["n_", "+", "1"]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["0", ",", RowBox[List["-", "\[Lambda]_"]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List[RowBox[List["-", "a_"]], " ", SuperscriptBox["r_", "z_"]]]]], "]"]]]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["a", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["a", " ", SuperscriptBox["r", "z"]]]], " ", SuperscriptBox["r", "z"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], " ", SuperscriptBox["r", "z"]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", "\[Lambda]"]]], " ", SuperscriptBox["s", RowBox[List["2", " ", "z"]]], " ", RowBox[List["Log", "[", "r", "]"]]]], RowBox[List["n", "!"]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.