Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
LegendreP






Mathematica Notation

Traditional Notation









Polynomials > LegendreP[n,z] > Series representations > Generalized power series > Expansions at z==0





http://functions.wolfram.com/05.03.06.0002.01









  


  










Input Form





LegendreP[2 m + 1, z] \[Proportional] ((2 (-1)^m z Gamma[3/2 + m])/(Sqrt[Pi] m!)) (1 - ((m (3 + 2 m))/3) z^2 + (1/30) (-1 + m) m (3 + 2 m) (5 + 2 m) z^4 + \[Ellipsis]) /; (z -> 0)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["LegendreP", "[", RowBox[List[RowBox[List[RowBox[List["2", "m"]], "+", "1"]], ",", "z"]], "]"]], "\[Proportional]", RowBox[List[FractionBox[RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "m"], " ", "z", " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["3", "2"], "+", "m"]], "]"]]]], RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["m", "!"]]]]], RowBox[List["(", RowBox[List["1", "-", RowBox[List[FractionBox[RowBox[List[" ", RowBox[List["m", " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["2", " ", "m"]]]], ")"]]]]]], "3"], " ", SuperscriptBox["z", "2"]]], "+", RowBox[List[FractionBox["1", "30"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], " ", "m", " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["2", " ", "m"]]]], ")"]], " ", RowBox[List["(", RowBox[List["5", "+", RowBox[List["2", " ", "m"]]]], ")"]], " ", SuperscriptBox["z", "4"]]], "+", "\[Ellipsis]"]], ")"]]]]]], "/;", RowBox[List["(", RowBox[List["z", "\[Rule]", "0"]], ")"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox[&quot;P&quot;, LegendreP] </annotation> </semantics> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> m </mi> </msup> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[RowBox[List[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;m&quot;]], &quot;+&quot;, &quot;1&quot;]], Identity, Rule[Editable, True]]], List[TagBox[&quot;m&quot;, Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mfrac> <mrow> <mtext> </mtext> <mrow> <mi> m </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mn> 3 </mn> </mfrac> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> m </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 3 </mn> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 5 </mn> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mn> 30 </mn> </mfrac> <mo> &#8290; </mo> <mtext> </mtext> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mo> &#8230; </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> LegendreP </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> <cn type='integer'> 1 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> m </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Binomial </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> <cn type='integer'> 1 </cn> </apply> <ci> m </ci> </apply> <ci> z </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <ci> m </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <ci> m </ci> <apply> <plus /> <cn type='integer'> 3 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 5 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 30 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <ci> &#8230; </ci> </apply> </apply> </apply> <apply> <ci> Rule </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["LegendreP", "[", RowBox[List[RowBox[List[RowBox[List["2", " ", "m_"]], "+", "1"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "m"], " ", "z", " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["3", "2"], "+", "m"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List[FractionBox["1", "3"], " ", RowBox[List["(", RowBox[List["m", " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["2", " ", "m"]]]], ")"]]]], ")"]], " ", SuperscriptBox["z", "2"]]], "+", RowBox[List[FractionBox["1", "30"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], " ", "m", " ", RowBox[List["(", RowBox[List["3", "+", RowBox[List["2", " ", "m"]]]], ")"]], " ", RowBox[List["(", RowBox[List["5", "+", RowBox[List["2", " ", "m"]]]], ")"]], " ", SuperscriptBox["z", "4"]]], "+", "\[Ellipsis]"]], ")"]]]], RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["m", "!"]]]]], "/;", RowBox[List["(", RowBox[List["z", "\[Rule]", "0"]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.