Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
LegendreP






Mathematica Notation

Traditional Notation









Polynomials > LegendreP[n,z] > Summation > Infinite summation





http://functions.wolfram.com/05.03.23.0013.01









  


  










Input Form





Sum[(k + 1/2) LegendreP[k, x] LegendreP[k, y] LegendreP[k, z], {k, 0, Infinity}] == UnitStep[1 - x^2 - y^2 - z^2 + 2 x y z] (1/(Pi Sqrt[1 - x^2 - y^2 - z^2 + 2 x y z])) /; Element[x, Reals] && -1 < x < 1 && Element[y, Reals] && -1 < y < 1 && Element[z, Reals] && -1 < z < 1










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[RowBox[List["(", RowBox[List["k", "+", FractionBox["1", "2"]]], ")"]], " ", RowBox[List["LegendreP", "[", RowBox[List["k", ",", "x"]], "]"]], " ", RowBox[List["LegendreP", "[", RowBox[List["k", ",", "y"]], "]"]], " ", RowBox[List["LegendreP", "[", RowBox[List["k", ",", "z"]], "]"]]]]]], "\[Equal]", RowBox[List[RowBox[List["UnitStep", "[", RowBox[List["1", "-", SuperscriptBox["x", "2"], "-", SuperscriptBox["y", "2"], "-", SuperscriptBox["z", "2"], "+", RowBox[List["2", " ", "x", " ", "y", " ", "z"]]]], "]"]], FractionBox["1", RowBox[List["\[Pi]", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"], "-", SuperscriptBox["y", "2"], "-", SuperscriptBox["z", "2"], "+", RowBox[List["2", " ", "x", " ", "y", " ", "z"]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["x", "\[Element]", "Reals"]], "\[And]", RowBox[List[RowBox[List["-", "1"]], "<", "x", "<", "1"]], "\[And]", RowBox[List["y", "\[Element]", "Reals"]], "\[And]", RowBox[List[RowBox[List["-", "1"]], "<", "y", "<", "1"]], "\[And]", RowBox[List["z", "\[Element]", "Reals"]], "\[And]", RowBox[List[RowBox[List["-", "1"]], "<", "z", "<", "1"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox[&quot;P&quot;, LegendreP] </annotation> </semantics> <mi> k </mi> </msub> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox[&quot;P&quot;, LegendreP] </annotation> </semantics> <mi> k </mi> </msub> <mo> ( </mo> <mi> y </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox[&quot;P&quot;, LegendreP] </annotation> </semantics> <mi> k </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mfrac> <mrow> <semantics> <mi> &#952; </mi> <annotation-xml encoding='MathML-Content'> <ci> UnitStep </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> y </mi> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mi> x </mi> </mrow> <mo> - </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <msup> <mi> x </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> y </mi> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mi> x </mi> </mrow> <mo> - </mo> <msup> <mi> y </mi> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mfrac> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> x </mi> <mo> &#8712; </mo> <semantics> <mi> &#8477; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalR]&quot;, Function[Reals]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> &lt; </mo> <mi> x </mi> <mo> &lt; </mo> <mn> 1 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mi> y </mi> <mo> &#8712; </mo> <semantics> <mi> &#8477; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalR]&quot;, Function[Reals]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> &lt; </mo> <mi> y </mi> <mo> &lt; </mo> <mn> 1 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mi> z </mi> <mo> &#8712; </mo> <semantics> <mi> &#8477; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalR]&quot;, Function[Reals]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> &lt; </mo> <mi> z </mi> <mo> &lt; </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <plus /> <ci> k </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> LegendreP </ci> <ci> k </ci> <ci> x </ci> </apply> <apply> <ci> LegendreP </ci> <ci> k </ci> <ci> y </ci> </apply> <apply> <ci> LegendreP </ci> <ci> k </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <ci> UnitStep </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> y </ci> <ci> z </ci> <ci> x </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <pi /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> x </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> y </ci> <ci> z </ci> <ci> x </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> y </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> x </ci> <reals /> </apply> <apply> <lt /> <cn type='integer'> -1 </cn> <ci> x </ci> <cn type='integer'> 1 </cn> </apply> <apply> <in /> <ci> y </ci> <reals /> </apply> <apply> <lt /> <cn type='integer'> -1 </cn> <ci> y </ci> <cn type='integer'> 1 </cn> </apply> <apply> <in /> <ci> z </ci> <reals /> </apply> <apply> <lt /> <cn type='integer'> -1 </cn> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k_", "=", "0"]], "\[Infinity]"], RowBox[List[RowBox[List["(", RowBox[List["k_", "+", FractionBox["1", "2"]]], ")"]], " ", RowBox[List["LegendreP", "[", RowBox[List["k_", ",", "x_"]], "]"]], " ", RowBox[List["LegendreP", "[", RowBox[List["k_", ",", "y_"]], "]"]], " ", RowBox[List["LegendreP", "[", RowBox[List["k_", ",", "z_"]], "]"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List["UnitStep", "[", RowBox[List["1", "-", SuperscriptBox["x", "2"], "-", SuperscriptBox["y", "2"], "-", SuperscriptBox["z", "2"], "+", RowBox[List["2", " ", "x", " ", "y", " ", "z"]]]], "]"]], RowBox[List["\[Pi]", " ", SqrtBox[RowBox[List["1", "-", SuperscriptBox["x", "2"], "-", SuperscriptBox["y", "2"], "-", SuperscriptBox["z", "2"], "+", RowBox[List["2", " ", "x", " ", "y", " ", "z"]]]]]]]], "/;", RowBox[List[RowBox[List["x", "\[Element]", "Reals"]], "&&", RowBox[List[RowBox[List["-", "1"]], "<", "x", "<", "1"]], "&&", RowBox[List["y", "\[Element]", "Reals"]], "&&", RowBox[List[RowBox[List["-", "1"]], "<", "y", "<", "1"]], "&&", RowBox[List["z", "\[Element]", "Reals"]], "&&", RowBox[List[RowBox[List["-", "1"]], "<", "z", "<", "1"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18





© 1998-2014 Wolfram Research, Inc.