Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
LegendreP






Mathematica Notation

Traditional Notation









Polynomials > LegendreP[n,mu,2,z] > Differential equations > Ordinary linear differential equations and wronskians > For the direct function itself





http://functions.wolfram.com/05.07.13.0003.01









  


  










Input Form





Derivative[1][g][z] Derivative[2][w][z] - ((2 g[z] Derivative[1][g][z]^2)/(1 - g[z]^2) + Derivative[2][g][z]) Derivative[1][w][z] - (((\[Mu]^2 - n (1 + n) (1 - g[z]^2)) Derivative[1][g][z]^3)/(1 - g[z]^2)^2) w[z] == 0 /; w[z] == Subscript[c, 1] LegendreP[n, \[Mu], 2, g[z]] + Subscript[c, 2] LegendreQ[n, \[Mu], 2, g[z]]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], " ", RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[FractionBox[RowBox[List["2", " ", RowBox[List["g", "[", "z", "]"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "2"]]], RowBox[List["1", "-", SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "2"]]]], "+", " ", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], ")"]], RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]]]], " ", "-", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[Mu]", "2"], "-", RowBox[List["n", " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "2"]]], ")"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z", "]"]], "3"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox[RowBox[List["g", "[", "z", "]"]], "2"]]], ")"]], "2"]], RowBox[List["w", "[", "z", "]"]]]]]], "\[Equal]", "0"]], "/;", " ", RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List[SubscriptBox["c", "1"], RowBox[List["LegendreP", "[", RowBox[List["n", ",", "\[Mu]", ",", "2", ",", RowBox[List["g", "[", "z", "]"]]]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "2"], RowBox[List["LegendreQ", "[", RowBox[List["n", ",", "\[Mu]", ",", "2", ",", RowBox[List["g", "[", "z", "]"]]]], "]"]]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mrow> <mrow> <msup> <mi> g </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> w </mi> <mi> &#8242;&#8242; </mi> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mtext> </mtext> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> g </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <msup> <mi> g </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mrow> <mi> g </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> + </mo> <mrow> <msup> <mi> g </mi> <mi> &#8242;&#8242; </mi> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> w </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> &#956; </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mi> n </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mrow> <mi> g </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <msup> <mi> g </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mrow> <mi> g </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <mi> w </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> &#63449; </mo> <mn> 0 </mn> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> w </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <mrow> <msub> <mi> c </mi> <mn> 1 </mn> </msub> <mo> &#8290; </mo> <mrow> <msubsup> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox[&quot;P&quot;, LegendreP] </annotation> </semantics> <mi> n </mi> <mi> &#956; </mi> </msubsup> <mo> ( </mo> <semantics> <mrow> <mi> g </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;g&quot;, &quot;(&quot;, &quot;z&quot;, &quot;)&quot;]], HoldComplete[LegendreP, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <msub> <mi> c </mi> <mn> 2 </mn> </msub> <mo> &#8290; </mo> <mrow> <msubsup> <semantics> <mi> Q </mi> <annotation encoding='Mathematica'> TagBox[&quot;Q&quot;, LegendreQ] </annotation> </semantics> <mi> n </mi> <mi> &#956; </mi> </msubsup> <mo> ( </mo> <semantics> <mrow> <mi> g </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;g&quot;, &quot;(&quot;, &quot;z&quot;, &quot;)&quot;]], HoldComplete[LegendreQ, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <plus /> <apply> <times /> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> g </ci> <ci> z </ci> </apply> <apply> <power /> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <ci> g </ci> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> &#956; </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> n </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <ci> g </ci> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <ci> g </ci> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <eq /> <apply> <ci> w </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> c </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> LegendreP </ci> <ci> n </ci> <ci> &#956; </ci> <cn type='integer'> 2 </cn> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> LegendreQ </ci> <ci> n </ci> <ci> &#956; </ci> <cn type='integer'> 2 </cn> <apply> <ci> g </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], " ", RowBox[List[SuperscriptBox["w", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[FractionBox[RowBox[List["2", " ", RowBox[List["g", "[", "z_", "]"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "2"]]], RowBox[List["1", "-", SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "2"]]]], "+", RowBox[List[SuperscriptBox["g", "\[Prime]\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], ")"]], " ", RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[Mu]_", "2"], "-", RowBox[List["n_", " ", RowBox[List["(", RowBox[List["1", "+", "n_"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "2"]]], ")"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List[SuperscriptBox["g", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "3"]]], ")"]], " ", RowBox[List["w", "[", "z_", "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox[RowBox[List["g", "[", "z_", "]"]], "2"]]], ")"]], "2"]]]], "]"]], "\[RuleDelayed]", RowBox[List["0", "/;", RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List[SubscriptBox["c", "1"], " ", RowBox[List["LegendreP", "[", RowBox[List["n", ",", "\[Mu]", ",", "2", ",", RowBox[List["g", "[", "z", "]"]]]], "]"]]]], "+", RowBox[List[SubscriptBox["c", "2"], " ", RowBox[List["LegendreQ", "[", RowBox[List["n", ",", "\[Mu]", ",", "2", ",", RowBox[List["g", "[", "z", "]"]]]], "]"]]]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.