Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
LegendreP






Mathematica Notation

Traditional Notation









Polynomials > LegendreP[n,mu,2,z] > Integration > Definite integration > Involving the direct function





http://functions.wolfram.com/05.07.21.0009.01









  


  










Input Form





Integrate[LegendreP[n, m, t]^2/(1 - t^2)^(p + 1), {t, -1, 1}] == ((m - p - 1)!/(2^(m + p) (2 m - 2 p - 1)!!)) ((n + m)!/((n - m)! m!))^2 HypergeometricPFQ[{m - n, m + n + 1, m + 1/2, m - p}, {2 m + 1, m + 1, m - p + 1/2}, 1] /; Element[n, Integers] && n >= 0 && Element[m, Integers] && m >= 0 && Element[p, Integers] && p >= 0 && p + 1 <= m <= n










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubsuperscriptBox["\[Integral]", RowBox[List["-", "1"]], "1"], RowBox[List[FractionBox[SuperscriptBox[RowBox[List["LegendreP", "[", RowBox[List["n", ",", "m", ",", "t"]], "]"]], "2"], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["t", "2"]]], ")"]], RowBox[List["p", "+", "1"]]]], RowBox[List["\[DifferentialD]", "t"]]]]]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["m", "-", "p", "-", "1"]], ")"]], "!"]], " "]], RowBox[List[SuperscriptBox["2", RowBox[List["m", "+", "p"]]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "m"]], "-", RowBox[List["2", " ", "p"]], "-", "1"]], ")"]], "!!"]]]]], SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["n", "+", "m"]], ")"]], "!"]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["n", "-", "m"]], ")"]], "!"]], " ", RowBox[List["m", "!"]]]]], ")"]], "2"], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["m", "-", "n"]], ",", RowBox[List["m", "+", "n", "+", "1"]], ",", RowBox[List["m", "+", FractionBox["1", "2"]]], ",", RowBox[List["m", "-", "p"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[RowBox[List["2", " ", "m"]], "+", "1"]], ",", RowBox[List["m", "+", "1"]], ",", RowBox[List["m", "-", "p", "+", FractionBox["1", "2"]]]]], "}"]], ",", "1"]], "]"]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["p", "\[Element]", "Integers"]], "\[And]", RowBox[List["p", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List[RowBox[List["p", "+", "1"]], "\[LessEqual]", "m", "\[LessEqual]", "n"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <mo> &#8747; </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 1 </mn> </msubsup> <mrow> <mfrac> <msup> <mrow> <msubsup> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox[&quot;P&quot;, LegendreP] </annotation> </semantics> <mi> n </mi> <mi> m </mi> </msubsup> <mo> ( </mo> <mi> t </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> t </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> p </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> t </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mi> p </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mrow> <msup> <mn> 2 </mn> <mrow> <mi> m </mi> <mo> + </mo> <mi> p </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> p </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> !! </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> m </mi> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 4 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> m </mi> <mo> - </mo> <mi> n </mi> </mrow> <mo> , </mo> <mrow> <mi> m </mi> <mo> + </mo> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> m </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mi> m </mi> <mo> - </mo> <mi> p </mi> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> m </mi> <mo> - </mo> <mi> p </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;4&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;3&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;m&quot;, &quot;-&quot;, &quot;n&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;m&quot;, &quot;+&quot;, &quot;n&quot;, &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;m&quot;, &quot;+&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;m&quot;, &quot;-&quot;, &quot;p&quot;]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;m&quot;]], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;m&quot;, &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;m&quot;, &quot;-&quot;, &quot;p&quot;, &quot;+&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[&quot;1&quot;, HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> n </mi> <mo> &#8712; </mo> <semantics> <mi> &#8469; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalN]&quot;, Function[Integers]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <mi> m </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mi> p </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> p </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> &#8804; </mo> <mi> m </mi> <mo> &#8804; </mo> <mi> n </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <int /> <bvar> <ci> t </ci> </bvar> <lowlimit> <cn type='integer'> -1 </cn> </lowlimit> <uplimit> <cn type='integer'> 1 </cn> </uplimit> <apply> <times /> <apply> <power /> <apply> <ci> LegendreP </ci> <ci> n </ci> <ci> m </ci> <ci> t </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> t </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <ci> p </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <factorial /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> m </ci> <ci> p </ci> </apply> </apply> <apply> <ci> Factorial2 </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> p </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <apply> <plus /> <ci> m </ci> <ci> n </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> <apply> <factorial /> <ci> m </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <apply> <plus /> <ci> m </ci> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> m </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> </list> <list> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </list> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> n </ci> <integers /> </apply> <apply> <in /> <ci> m </ci> <ci> &#8469; </ci> </apply> <apply> <in /> <ci> p </ci> <ci> &#8469; </ci> </apply> <apply> <leq /> <apply> <plus /> <ci> p </ci> <cn type='integer'> 1 </cn> </apply> <ci> m </ci> <ci> n </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubsuperscriptBox["\[Integral]", RowBox[List["-", "1"]], "1"], RowBox[List[FractionBox[SuperscriptBox[RowBox[List["LegendreP", "[", RowBox[List["n_", ",", "m_", ",", "t_"]], "]"]], "2"], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["t_", "2"]]], ")"]], RowBox[List["p_", "+", "1"]]]], RowBox[List["\[DifferentialD]", "t_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["m", "-", "p", "-", "1"]], ")"]], "!"]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["n", "+", "m"]], ")"]], "!"]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["n", "-", "m"]], ")"]], "!"]], " ", RowBox[List["m", "!"]]]]], ")"]], "2"], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["m", "-", "n"]], ",", RowBox[List["m", "+", "n", "+", "1"]], ",", RowBox[List["m", "+", FractionBox["1", "2"]]], ",", RowBox[List["m", "-", "p"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[RowBox[List["2", " ", "m"]], "+", "1"]], ",", RowBox[List["m", "+", "1"]], ",", RowBox[List["m", "-", "p", "+", FractionBox["1", "2"]]]]], "}"]], ",", "1"]], "]"]]]], RowBox[List[SuperscriptBox["2", RowBox[List["m", "+", "p"]]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "m"]], "-", RowBox[List["2", " ", "p"]], "-", "1"]], ")"]], "!!"]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]], "&&", RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", "\[GreaterEqual]", "0"]], "&&", RowBox[List["p", "\[Element]", "Integers"]], "&&", RowBox[List["p", "\[GreaterEqual]", "0"]], "&&", RowBox[List[RowBox[List["p", "+", "1"]], "\[LessEqual]", "m", "\[LessEqual]", "n"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18





© 1998-2014 Wolfram Research, Inc.