Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
NorlundB






Mathematica Notation

Traditional Notation









Polynomials > NorlundB[n,α] > Differentiation > Low-order differentiation





http://functions.wolfram.com/05.16.20.0003.01









  


  










Input Form





D[NorlundB[n, z], {z, 2}] == ((n (n - 1))/4) NorlundB[n - 2, z] + Sum[(n/k) Binomial[n - 1, k] BernoulliB[k] NorlundB[n - k - 1, z], {k, 2, n - 1}] + Sum[(n!/(k (n - m) k! (m - k)! (n - m)!)) BernoulliB[n - m] BernoulliB[k] NorlundB[m - k, z], {m, 0, n - 2}, {k, 2, m}]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["z", ",", "2"]], "}"]]], RowBox[List["NorlundB", "[", RowBox[List["n", ",", "z"]], "]"]]]], "\[Equal]", RowBox[List[RowBox[List[FractionBox[RowBox[List["n", RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]]]], "4"], " ", RowBox[List["NorlundB", "[", RowBox[List[RowBox[List["n", "-", "2"]], ",", "z"]], "]"]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "2"]], RowBox[List["n", "-", "1"]]], RowBox[List[FractionBox["n", "k"], RowBox[List["Binomial", "[", RowBox[List[RowBox[List["n", "-", "1"]], ",", "k"]], "]"]], " ", RowBox[List["BernoulliB", "[", "k", "]"]], RowBox[List["NorlundB", "[", RowBox[List[RowBox[List["n", "-", "k", "-", "1"]], ",", "z"]], "]"]]]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", "0"]], RowBox[List["n", "-", "2"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "2"]], "m"], RowBox[List[FractionBox[RowBox[List["n", "!"]], RowBox[List["k", " ", RowBox[List["(", RowBox[List["n", "-", "m"]], ")"]], " ", RowBox[List["k", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["m", "-", "k"]], ")"]], "!"]], RowBox[List[RowBox[List["(", RowBox[List["n", "-", "m"]], ")"]], "!"]]]]], RowBox[List["BernoulliB", "[", RowBox[List["n", "-", "m"]], "]"]], " ", RowBox[List["BernoulliB", "[", "k", "]"]], RowBox[List["NorlundB", "[", RowBox[List[RowBox[List["m", "-", "k"]], ",", "z"]], "]"]]]]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mfrac> <mrow> <mi> n </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <msubsup> <semantics> <mi> B </mi> <annotation encoding='Mathematica'> TagBox[&quot;B&quot;, NorlundB] </annotation> </semantics> <mrow> <mi> n </mi> <mo> - </mo> <mn> 2 </mn> </mrow> <mrow> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </msubsup> </mrow> <mo> + </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 2 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mfrac> <mi> n </mi> <mi> k </mi> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[RowBox[List[&quot;n&quot;, &quot;-&quot;, &quot;1&quot;]], Identity, Rule[Editable, True], Rule[Selectable, True]]], List[TagBox[&quot;k&quot;, Identity, Rule[Editable, True], Rule[Selectable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mo> &#8290; </mo> <msub> <semantics> <mi> B </mi> <annotation encoding='Mathematica'> TagBox[&quot;B&quot;, BernoulliB] </annotation> </semantics> <mi> k </mi> </msub> <mo> &#8290; </mo> <msubsup> <semantics> <mi> B </mi> <annotation encoding='Mathematica'> TagBox[&quot;B&quot;, NorlundB] </annotation> </semantics> <mrow> <mi> n </mi> <mo> - </mo> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </msubsup> </mrow> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> m </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 2 </mn> </mrow> </munderover> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 2 </mn> </mrow> <mi> m </mi> </munderover> <mrow> <mfrac> <mrow> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <msub> <semantics> <mi> B </mi> <annotation encoding='Mathematica'> TagBox[&quot;B&quot;, BernoulliB] </annotation> </semantics> <mrow> <mi> n </mi> <mo> - </mo> <mi> m </mi> </mrow> </msub> <mo> &#8290; </mo> <mtext> </mtext> <msub> <semantics> <mi> B </mi> <annotation encoding='Mathematica'> TagBox[&quot;B&quot;, BernoulliB] </annotation> </semantics> <mi> k </mi> </msub> </mrow> <mrow> <mi> k </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <msubsup> <semantics> <mi> B </mi> <annotation encoding='Mathematica'> TagBox[&quot;B&quot;, NorlundB] </annotation> </semantics> <mrow> <mi> m </mi> <mo> - </mo> <mi> k </mi> </mrow> <mrow> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </msubsup> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <plus /> <apply> <times /> <apply> <times /> <ci> n </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> NorlundB </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> -2 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 2 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <times /> <ci> n </ci> <apply> <power /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Binomial </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <ci> k </ci> </apply> <apply> <ci> BernoulliB </ci> <ci> k </ci> </apply> <apply> <ci> NorlundB </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 2 </cn> </lowlimit> <uplimit> <ci> m </ci> </uplimit> <apply> <sum /> <bvar> <ci> m </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> n </ci> <cn type='integer'> -2 </cn> </apply> </uplimit> <apply> <times /> <apply> <times /> <apply> <factorial /> <ci> n </ci> </apply> <apply> <ci> BernoulliB </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> <apply> <ci> BernoulliB </ci> <ci> k </ci> </apply> <apply> <power /> <apply> <times /> <ci> k </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <apply> <factorial /> <ci> k </ci> </apply> <apply> <factorial /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> NorlundB </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["z_", ",", "2"]], "}"]]]]], RowBox[List["NorlundB", "[", RowBox[List["n_", ",", "z_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["n", " ", RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]]]], ")"]], " ", RowBox[List["NorlundB", "[", RowBox[List[RowBox[List["n", "-", "2"]], ",", "z"]], "]"]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "2"]], RowBox[List["n", "-", "1"]]], FractionBox[RowBox[List["n", " ", RowBox[List["Binomial", "[", RowBox[List[RowBox[List["n", "-", "1"]], ",", "k"]], "]"]], " ", RowBox[List["BernoulliB", "[", "k", "]"]], " ", RowBox[List["NorlundB", "[", RowBox[List[RowBox[List["n", "-", "k", "-", "1"]], ",", "z"]], "]"]]]], "k"]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", "0"]], RowBox[List["n", "-", "2"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "2"]], "m"], FractionBox[RowBox[List[RowBox[List["n", "!"]], " ", RowBox[List["BernoulliB", "[", RowBox[List["n", "-", "m"]], "]"]], " ", RowBox[List["BernoulliB", "[", "k", "]"]], " ", RowBox[List["NorlundB", "[", RowBox[List[RowBox[List["m", "-", "k"]], ",", "z"]], "]"]]]], RowBox[List["k", " ", RowBox[List["(", RowBox[List["n", "-", "m"]], ")"]], " ", RowBox[List["k", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["m", "-", "k"]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["n", "-", "m"]], ")"]], "!"]]]]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.