Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
NorlundB






Mathematica Notation

Traditional Notation









Polynomials > NorlundB[n,α,z] > Series representations > Generalized power series > Expansions at alpha==infinity





http://functions.wolfram.com/05.17.06.0023.01









  


  










Input Form





NorlundB[n, \[Alpha], z] == z^n UnitStep[n] - z^n Sum[(Binomial[n, k] \[Alpha]^k Sum[StirlingS1[k + 1, r] Sum[((-1)^(j + i) j^(r - k + i - 1) Binomial[k, j] Subscript[p, j, k])/\[Alpha]^i, {j, 1, k}], {i, 0, k}, {r, 1, k - i}])/z^k, {k, 0, n}] /; Subscript[p, j, 0] == 1 && Subscript[p, j, k] == (1/k) Sum[(j m - k + m) Subscript[a, m] Subscript[p, j, k - m], {m, 1, k}] && Subscript[a, k] == 1/(k + 1)! && Element[k, Integers] && k >= 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["NorlundB", "[", RowBox[List["n", ",", "\[Alpha]", ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[SuperscriptBox["z", "n"], " ", RowBox[List["UnitStep", "[", "n", "]"]]]], "-", RowBox[List[SuperscriptBox["z", "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["n", ",", "k"]], "]"]], " ", SuperscriptBox["z", RowBox[List["-", "k"]]], SuperscriptBox["\[Alpha]", "k"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "0"]], "k"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["r", "=", "1"]], RowBox[List["k", "-", "i"]]], " ", RowBox[List[RowBox[List["StirlingS1", "[", RowBox[List[RowBox[List["k", "+", "1"]], ",", "r"]], "]"]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "k"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["j", "+", "i"]]], " ", SuperscriptBox["j", RowBox[List["r", "-", "k", "+", "i", "-", "1"]]], RowBox[List["Binomial", "[", RowBox[List["k", ",", "j"]], "]"]], SubscriptBox["p", RowBox[List["j", ",", "k"]]], SuperscriptBox["\[Alpha]", RowBox[List["-", "i"]]]]]]]]]]]]]]]]]]]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["p", RowBox[List["j", ",", "0"]]], "\[Equal]", "1"]], "\[And]", RowBox[List[SubscriptBox["p", RowBox[List["j", ",", "k"]]], "\[Equal]", RowBox[List[FractionBox["1", "k"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", "1"]], "k"], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["j", " ", "m"]], "-", "k", "+", "m"]], ")"]], SubscriptBox["a", "m"], " ", SubscriptBox["p", RowBox[List["j", ",", RowBox[List["k", "-", "m"]]]]]]]]]]]]], "\[And]", RowBox[List[SubscriptBox["a", "k"], "\[Equal]", FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], "!"]]]]], "\[And]", RowBox[List["k", "\[Element]", "Integers"]], "\[And]", RowBox[List["k", "\[GreaterEqual]", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <semantics> <mi> B </mi> <annotation encoding='Mathematica'> TagBox[&quot;B&quot;, NorlundB] </annotation> </semantics> <mi> n </mi> <mrow> <mo> ( </mo> <mi> &#945; </mi> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <mrow> <msup> <mi> z </mi> <mi> n </mi> </msup> <mo> &#8290; </mo> <mrow> <semantics> <mi> &#952; </mi> <annotation-xml encoding='MathML-Content'> <ci> UnitStep </ci> </annotation-xml> </semantics> <mo> ( </mo> <mi> n </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> z </mi> <mi> n </mi> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> n </mi> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;n&quot;, Identity, Rule[Editable, True], Rule[Selectable, True]]], List[TagBox[&quot;k&quot;, Identity, Rule[Editable, True], Rule[Selectable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mo> - </mo> <mi> k </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> &#945; </mi> <mi> k </mi> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> i </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> r </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mi> i </mi> </mrow> </munderover> <mrow> <msubsup> <semantics> <mi> S </mi> <annotation encoding='Mathematica'> TagBox[&quot;S&quot;, StirlingS1] </annotation> </semantics> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mrow> <mo> ( </mo> <mi> r </mi> <mo> ) </mo> </mrow> </msubsup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> i </mi> <mo> + </mo> <mi> j </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> j </mi> <mrow> <mi> i </mi> <mo> - </mo> <mi> k </mi> <mo> + </mo> <mi> r </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> <mtr> <mtd> <mi> j </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;k&quot;, Identity, Rule[Editable, True], Rule[Selectable, True]]], List[TagBox[&quot;j&quot;, Identity, Rule[Editable, True], Rule[Selectable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mo> &#8290; </mo> <msub> <mi> p </mi> <mrow> <mi> j </mi> <mo> , </mo> <mi> k </mi> </mrow> </msub> <mo> &#8290; </mo> <msup> <mi> &#945; </mi> <mrow> <mo> - </mo> <mi> i </mi> </mrow> </msup> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <msub> <mi> p </mi> <mrow> <mi> j </mi> <mo> , </mo> <mn> 0 </mn> </mrow> </msub> <mo> &#63449; </mo> <mn> 1 </mn> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> p </mi> <mrow> <mi> j </mi> <mo> , </mo> <mi> k </mi> </mrow> </msub> <mo> &#63449; </mo> <mrow> <mfrac> <mn> 1 </mn> <mi> k </mi> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> m </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> j </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mi> m </mi> <mo> - </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <mi> a </mi> <mi> m </mi> </msub> <mo> &#8290; </mo> <msub> <mi> p </mi> <mrow> <mi> j </mi> <mo> , </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> m </mi> </mrow> </mrow> </msub> </mrow> </mrow> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> a </mi> <mi> k </mi> </msub> <mo> &#63449; </mo> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> </mrow> <mo> &#8743; </mo> <mrow> <mi> k </mi> <mo> &#8712; </mo> <semantics> <mi> &#8469; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalN]&quot;, Function[Integers]] </annotation> </semantics> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> NorlundB </ci> <ci> n </ci> <ci> &#945; </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <ci> n </ci> </apply> <apply> <ci> UnitStep </ci> <ci> n </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <ci> n </ci> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <ci> Binomial </ci> <ci> n </ci> <ci> k </ci> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> <apply> <power /> <ci> &#945; </ci> <ci> k </ci> </apply> <apply> <sum /> <bvar> <ci> r </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> i </ci> </apply> </apply> </uplimit> <apply> <sum /> <bvar> <ci> i </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <times /> <apply> <ci> StirlingS1 </ci> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <ci> r </ci> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> i </ci> <ci> j </ci> </apply> </apply> <apply> <power /> <ci> j </ci> <apply> <plus /> <ci> i </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <ci> r </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Binomial </ci> <ci> k </ci> <ci> j </ci> </apply> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> j </ci> <ci> k </ci> </apply> <apply> <power /> <ci> &#945; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> i </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> j </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> j </ci> <ci> k </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> m </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> j </ci> <ci> m </ci> </apply> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <ci> m </ci> </apply> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> j </ci> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> a </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <in /> <ci> k </ci> <integers /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["NorlundB", "[", RowBox[List["n_", ",", "\[Alpha]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[SuperscriptBox["z", "n"], " ", RowBox[List["UnitStep", "[", "n", "]"]]]], "-", RowBox[List[SuperscriptBox["z", "n"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["n", ",", "k"]], "]"]], " ", SuperscriptBox["z", RowBox[List["-", "k"]]], " ", SuperscriptBox["\[Alpha]", "k"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "0"]], "k"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["r", "=", "1"]], RowBox[List["k", "-", "i"]]], RowBox[List[RowBox[List["StirlingS1", "[", RowBox[List[RowBox[List["k", "+", "1"]], ",", "r"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "k"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["j", "+", "i"]]], " ", SuperscriptBox["j", RowBox[List["r", "-", "k", "+", "i", "-", "1"]]], " ", RowBox[List["Binomial", "[", RowBox[List["k", ",", "j"]], "]"]], " ", SubscriptBox["p", RowBox[List["j", ",", "k"]]], " ", SuperscriptBox["\[Alpha]", RowBox[List["-", "i"]]]]]]]]]]]]]]]]]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["p", RowBox[List["j", ",", "0"]]], "\[Equal]", "1"]], "&&", RowBox[List[SubscriptBox["p", RowBox[List["j", ",", "k"]]], "\[Equal]", FractionBox[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", "1"]], "k"], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["j", " ", "m"]], "-", "k", "+", "m"]], ")"]], " ", SubscriptBox["a", "m"], " ", SubscriptBox["p", RowBox[List["j", ",", RowBox[List["k", "-", "m"]]]]]]]]], "k"]]], "&&", RowBox[List[SubscriptBox["a", "k"], "\[Equal]", FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], "!"]]]]], "&&", RowBox[List["k", "\[Element]", "Integers"]], "&&", RowBox[List["k", "\[GreaterEqual]", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.