Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
SphericalHarmonicY






Mathematica Notation

Traditional Notation









Polynomials > SphericalHarmonicY[n,m,theta,phi] > Summation > Finite summation > Involving the direct function





http://functions.wolfram.com/05.10.23.0007.01









  


  










Input Form





Sum[((-1)^l/((p - l + m)! Sqrt[2 l + 1] Sqrt[(l - m)! (l + m)!])) SphericalHarmonicY[l, m, \[CurlyTheta], \[CurlyPhi]] w^(p - l + m), {l, m, m + p}] == (-1)^p ((2 m - 1)!!/(2 Sqrt[Pi] (2 m + p)!)) (Sin[\[CurlyTheta]] E^(I \[CurlyPhi]))^m (1 - 2 w Cos[\[CurlyTheta]] + w^2)^(p/2) GegenbauerC[p, m + 1/2, (Cos[\[CurlyTheta]] - w)/Sqrt[1 - 2 w Cos[\[CurlyTheta]] + w^2]] /; m >= 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["l", "=", "m"]], RowBox[List["m", "+", "p"]]], RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "l"], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["p", "-", "l", "+", "m"]], ")"]], "!"]], " ", SqrtBox[RowBox[List[RowBox[List["2", "l"]], "+", "1"]]], SqrtBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["l", "-", "m"]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["l", "+", "m"]], ")"]], "!"]]]]]]]], RowBox[List["SphericalHarmonicY", "[", RowBox[List["l", ",", "m", ",", "\[CurlyTheta]", ",", "\[CurlyPhi]"]], "]"]], SuperscriptBox["w", RowBox[List["p", "-", "l", "+", "m"]]]]]]], "\[Equal]", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "p"], " ", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", "m"]], "-", "1"]], ")"]], "!!"]], RowBox[List["2", SqrtBox["\[Pi]"], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", "m"]], "+", "p"]], ")"]], "!"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["Sin", "[", "\[CurlyTheta]", "]"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[CurlyPhi]"]]]]], ")"]], "m"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", "w", " ", RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]]]], "+", SuperscriptBox["w", "2"]]], ")"]], FractionBox["p", "2"]], " ", RowBox[List["GegenbauerC", "[", RowBox[List["p", ",", RowBox[List["m", "+", FractionBox["1", "2"]]], ",", FractionBox[RowBox[List[RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]], "-", "w"]], SqrtBox[RowBox[List["1", "-", RowBox[List["2", "w", " ", RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]]]], "+", SuperscriptBox["w", "2"]]]]]]], "]"]]]]]], "/;", RowBox[List["m", "\[GreaterEqual]", "0"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> l </mi> <mo> = </mo> <mi> m </mi> </mrow> <mrow> <mi> m </mi> <mo> + </mo> <mi> p </mi> </mrow> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> l </mi> </msup> <mo> &#8290; </mo> <msup> <mi> w </mi> <mrow> <mi> p </mi> <mo> - </mo> <mi> l </mi> <mo> + </mo> <mi> m </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> - </mo> <mi> l </mi> <mo> + </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> l </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> l </mi> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> l </mi> <mo> + </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msubsup> <mi> Y </mi> <mi> l </mi> <mi> m </mi> </msubsup> <mo> ( </mo> <mrow> <mi> &#977; </mi> <mo> , </mo> <mi> &#966; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> p </mi> </msup> <mo> &#8290; </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> !! </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#977; </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#966; </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mi> m </mi> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> w </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#977; </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msup> <mi> w </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> p </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <msubsup> <mi> C </mi> <mi> p </mi> <mrow> <mi> m </mi> <mo> + </mo> <mrow> <mn> 1 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </mrow> </msubsup> <mo> ( </mo> <mfrac> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#977; </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mi> w </mi> </mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> w </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#977; </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msup> <mi> w </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> m </mi> <mo> &#8805; </mo> <mn> 0 </mn> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <sum /> <bvar> <ci> l </ci> </bvar> <lowlimit> <ci> m </ci> </lowlimit> <uplimit> <apply> <plus /> <ci> m </ci> <ci> p </ci> </apply> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> l </ci> </apply> <apply> <power /> <ci> w </ci> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> l </ci> </apply> <ci> m </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> l </ci> </apply> <ci> m </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> l </ci> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <apply> <plus /> <ci> l </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> <apply> <factorial /> <apply> <plus /> <ci> l </ci> <ci> m </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> SphericalHarmonicY </ci> <ci> l </ci> <ci> m </ci> <ci> &#977; </ci> <ci> &#966; </ci> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> <apply> <times /> <apply> <ci> Factorial2 </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> <ci> p </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <sin /> <ci> &#977; </ci> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <ci> &#966; </ci> </apply> </apply> </apply> <ci> m </ci> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> w </ci> <apply> <cos /> <ci> &#977; </ci> </apply> </apply> </apply> <apply> <power /> <ci> w </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> p </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> C </ci> <ci> p </ci> </apply> <apply> <plus /> <ci> m </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <cos /> <ci> &#977; </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> w </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> w </ci> <apply> <cos /> <ci> &#977; </ci> </apply> </apply> </apply> <apply> <power /> <ci> w </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <geq /> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["l_", "=", "m_"]], RowBox[List["m_", "+", "p_"]]], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "l_"], " ", RowBox[List["SphericalHarmonicY", "[", RowBox[List["l_", ",", "m_", ",", "\[CurlyTheta]_", ",", "\[CurlyPhi]_"]], "]"]], " ", SuperscriptBox["w_", RowBox[List["p_", "-", "l_", "+", "m_"]]]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["p_", "-", "l_", "+", "m_"]], ")"]], "!"]], " ", SqrtBox[RowBox[List[RowBox[List["2", " ", "l_"]], "+", "1"]]], " ", SqrtBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["l_", "-", "m_"]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["l_", "+", "m_"]], ")"]], "!"]]]]]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "p"], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "m"]], "-", "1"]], ")"]], "!!"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["Sin", "[", "\[CurlyTheta]", "]"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", "\[CurlyPhi]"]]]]], ")"]], "m"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", " ", "w", " ", RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]]]], "+", SuperscriptBox["w", "2"]]], ")"]], RowBox[List["p", "/", "2"]]], " ", RowBox[List["GegenbauerC", "[", RowBox[List["p", ",", RowBox[List["m", "+", FractionBox["1", "2"]]], ",", FractionBox[RowBox[List[RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]], "-", "w"]], SqrtBox[RowBox[List["1", "-", RowBox[List["2", " ", "w", " ", RowBox[List["Cos", "[", "\[CurlyTheta]", "]"]]]], "+", SuperscriptBox["w", "2"]]]]]]], "]"]]]], RowBox[List["2", " ", SqrtBox["\[Pi]"], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "m"]], "+", "p"]], ")"]], "!"]]]]], "/;", RowBox[List["m", "\[GreaterEqual]", "0"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.