Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ZernikeR






Mathematica Notation

Traditional Notation









Polynomials > ZernikeR[n,m,z] > Series representations > Generalized power series > Expansions at z==0





http://functions.wolfram.com/05.18.06.0004.01









  


  










Input Form





ZernikeR[n, m, z] \[Proportional] Cos[((n - m)/2) Pi] ((((m + n)/2)! z^m)/(m! ((1/2) (-m + n))!)) (1 + ((m - n) (2 + m + n) z^2)/(4 (1 + m)) + ((m - n) (2 + m - n) (2 + m + n) (4 + m + n) z^4)/(32 (1 + m) (2 + m)) + \[Ellipsis]) /. (z -> 0) && Element[n, Integers] && n >= 0 && Element[m, Integers] && m >= 0 && n >= m










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["ZernikeR", "[", RowBox[List["n", ",", "m", ",", "z"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List["Cos", "[", RowBox[List[FractionBox[RowBox[List["n", "-", "m"]], "2"], "\[Pi]"]], "]"]], FractionBox[RowBox[List[RowBox[List[FractionBox[RowBox[List["m", "+", "n"]], "2"], "!"]], SuperscriptBox["z", "m"]]], RowBox[List[RowBox[List["m", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "m"]], "+", "n"]], ")"]]]], ")"]], "!"]]]]], RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["m", "-", "n"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", "m", "+", "n"]], ")"]], " ", SuperscriptBox["z", "2"]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["1", "+", "m"]], ")"]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["m", "-", "n"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", "m", "-", "n"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", "m", "+", "n"]], ")"]], " ", RowBox[List["(", RowBox[List["4", "+", "m", "+", "n"]], ")"]], " ", SuperscriptBox["z", "4"]]], RowBox[List["32", " ", RowBox[List["(", RowBox[List["1", "+", "m"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", "m"]], ")"]]]]], "+", "\[Ellipsis]"]], ")"]]]]]], "/.", RowBox[List[RowBox[List["(", RowBox[List["z", "->", "0"]], ")"]], "\[And]", RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "m"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <mi> R </mi> <mi> n </mi> <mi> m </mi> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mfrac> <mrow> <mi> cos </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> n </mi> <mo> - </mo> <mi> m </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mfrac> <mrow> <mi> m </mi> <mo> + </mo> <mi> n </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ! </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <mrow> <mi> m </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mfrac> <mrow> <mi> n </mi> <mo> - </mo> <mi> m </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> m </mi> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> + </mo> <mi> n </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mi> n </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> + </mo> <mi> n </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> + </mo> <mi> n </mi> <mo> + </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mrow> <mn> 32 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mo> &#8230; </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /. </mo> <mtext> &#8203; </mtext> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8743; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mi> m </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mi> n </mi> <mo> &#8805; </mo> <mi> m </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> ReplaceAll </ci> <apply> <ci> Proportional </ci> <apply> <ci> ZernikeR </ci> <ci> n </ci> <ci> m </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <ci> cos </ci> <apply> <times /> <apply> <times /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <pi /> </apply> <apply> <factorial /> <apply> <times /> <apply> <plus /> <ci> m </ci> <ci> n </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <ci> m </ci> </apply> <apply> <factorial /> <apply> <times /> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> m </ci> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <apply> <plus /> <ci> m </ci> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <ci> m </ci> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <ci> m </ci> <ci> n </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 32 </cn> <apply> <plus /> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> &#8230; </ci> </apply> </apply> </apply> <apply> <and /> <apply> <ci> Rule </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <apply> <in /> <ci> n </ci> <ci> &#8469; </ci> </apply> <apply> <in /> <ci> m </ci> <ci> &#8469; </ci> </apply> <apply> <geq /> <ci> n </ci> <ci> m </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["ZernikeR", "[", RowBox[List["n", ",", "m", ",", "z"]], "]"]], "\[Proportional]", FractionBox[RowBox[List[RowBox[List["Cos", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["n", "-", "m"]], ")"]], " ", "\[Pi]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[FractionBox[RowBox[List["m", "+", "n"]], "2"], "!"]], " ", SuperscriptBox["z", "m"]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["m", "-", "n"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", "m", "+", "n"]], ")"]], " ", SuperscriptBox["z", "2"]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["1", "+", "m"]], ")"]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["m", "-", "n"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", "m", "-", "n"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", "m", "+", "n"]], ")"]], " ", RowBox[List["(", RowBox[List["4", "+", "m", "+", "n"]], ")"]], " ", SuperscriptBox["z", "4"]]], RowBox[List["32", " ", RowBox[List["(", RowBox[List["1", "+", "m"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", "m"]], ")"]]]]], "+", "\[Ellipsis]"]], ")"]]]], RowBox[List[RowBox[List["m", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "m"]], "+", "n"]], ")"]]]], ")"]], "!"]]]]]]], "/.", "\[InvisibleSpace]", RowBox[List[RowBox[List["(", RowBox[List["z", "\[Rule]", "0"]], ")"]], "&&", RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]], "&&", RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", "\[GreaterEqual]", "0"]], "&&", RowBox[List["n", "\[GreaterEqual]", "m"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.