Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ZernikeR






Mathematica Notation

Traditional Notation









Polynomials > ZernikeR[n,m,z] > Identities > Recurrence identities > Consecutive neighbors





http://functions.wolfram.com/05.18.17.0001.01









  


  










Input Form





ZernikeR[n, m, z] == (-((2 (3 + n) (m^2 - (8 + 6 n + n^2) (-1 + 2 z^2)))/ ((4 + n) (-m^2 + (2 + n)^2)))) ZernikeR[2 + n, m, z] - (((2 + n) (-m^2 + (4 + n)^2))/((4 + n) (-m^2 + (2 + n)^2))) ZernikeR[4 + n, m, z] /; Element[n, Integers] && n >= 0 && Element[m, Integers] && m >= 0 && m <= n










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["ZernikeR", "[", RowBox[List["n", ",", "m", ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List["3", "+", "n"]], ")"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["m", "2"], "-", RowBox[List[RowBox[List["(", RowBox[List["8", "+", RowBox[List["6", " ", "n"]], "+", SuperscriptBox["n", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", SuperscriptBox["z", "2"]]]]], ")"]]]]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["4", "+", "n"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["m", "2"]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["2", "+", "n"]], ")"]], "2"]]], ")"]]]]]]], RowBox[List["ZernikeR", "[", RowBox[List[RowBox[List["2", "+", "n"]], ",", "m", ",", "z"]], "]"]]]], "-", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", "+", "n"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["m", "2"]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["4", "+", "n"]], ")"]], "2"]]], ")"]], " "]], RowBox[List[RowBox[List["(", RowBox[List["4", "+", "n"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["m", "2"]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["2", "+", "n"]], ")"]], "2"]]], ")"]]]]], RowBox[List["ZernikeR", "[", RowBox[List[RowBox[List["4", "+", "n"]], ",", "m", ",", "z"]], "]"]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["m", "\[LessEqual]", "n"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <mi> R </mi> <mi> n </mi> <mi> m </mi> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> m </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> n </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 8 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> m </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <msubsup> <mi> R </mi> <mrow> <mi> n </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mi> m </mi> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> m </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> - </mo> <msup> <mi> m </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msubsup> <mi> R </mi> <mrow> <mi> n </mi> <mo> + </mo> <mn> 4 </mn> </mrow> <mi> m </mi> </msubsup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> n </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mi> m </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mi> m </mi> <mo> &#8804; </mo> <mi> n </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> ZernikeR </ci> <ci> n </ci> <ci> m </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> 3 </cn> </apply> <apply> <plus /> <apply> <power /> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 6 </cn> <ci> n </ci> </apply> <cn type='integer'> 8 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> n </ci> <cn type='integer'> 4 </cn> </apply> <apply> <plus /> <apply> <power /> <apply> <plus /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> ZernikeR </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> <ci> m </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <plus /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <power /> <apply> <plus /> <ci> n </ci> <cn type='integer'> 4 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> n </ci> <cn type='integer'> 4 </cn> </apply> <apply> <plus /> <apply> <power /> <apply> <plus /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> ZernikeR </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 4 </cn> </apply> <ci> m </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> n </ci> <ci> &#8469; </ci> </apply> <apply> <in /> <ci> m </ci> <ci> &#8469; </ci> </apply> <apply> <leq /> <ci> m </ci> <ci> n </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ZernikeR", "[", RowBox[List["n_", ",", "m_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", RowBox[List["(", RowBox[List["3", "+", "n"]], ")"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["m", "2"], "-", RowBox[List[RowBox[List["(", RowBox[List["8", "+", RowBox[List["6", " ", "n"]], "+", SuperscriptBox["n", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", SuperscriptBox["z", "2"]]]]], ")"]]]]]], ")"]]]], ")"]], " ", RowBox[List["ZernikeR", "[", RowBox[List[RowBox[List["2", "+", "n"]], ",", "m", ",", "z"]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List["4", "+", "n"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["m", "2"]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["2", "+", "n"]], ")"]], "2"]]], ")"]]]]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["2", "+", "n"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["m", "2"]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["4", "+", "n"]], ")"]], "2"]]], ")"]]]], ")"]], " ", RowBox[List["ZernikeR", "[", RowBox[List[RowBox[List["4", "+", "n"]], ",", "m", ",", "z"]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List["4", "+", "n"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["m", "2"]]], "+", SuperscriptBox[RowBox[List["(", RowBox[List["2", "+", "n"]], ")"]], "2"]]], ")"]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]], "&&", RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", "\[GreaterEqual]", "0"]], "&&", RowBox[List["m", "\[LessEqual]", "n"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.