Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











LerchPhi






Mathematica Notation

Traditional Notation









Zeta Functions and Polylogarithms > LerchPhi[z,s,a] > Series representations > Generalized power series > Expansions at z==z0 > For Phi^(z,s,a)





http://functions.wolfram.com/10.06.06.0021.01









  


  










Input Form





LerchPhiClassical[z, s, a] \[Proportional] LerchPhiClassical[Subscript[z, 0], s, a] + ((LerchPhiClassical[Subscript[z, 0], -1 + s, a] - a LerchPhiClassical[Subscript[z, 0], s, a]) (z - Subscript[z, 0]))/ Subscript[z, 0] + (1/(2 Subscript[z, 0]^2)) (LerchPhiClassical[Subscript[z, 0], -2 + s, a] - (1 + 2 a) LerchPhiClassical[Subscript[z, 0], -1 + s, a] + a (1 + a) LerchPhiClassical[Subscript[z, 0], s, a]) (z - Subscript[z, 0])^2 + \[Ellipsis] /; (z -> Subscript[z, 0])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["LerchPhiClassical", "[", RowBox[List["z", ",", "s", ",", "a"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List["LerchPhiClassical", "[", RowBox[List[SubscriptBox["z", "0"], ",", "s", ",", "a"]], "]"]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["LerchPhiClassical", "[", RowBox[List[SubscriptBox["z", "0"], ",", RowBox[List[RowBox[List["-", "1"]], "+", "s"]], ",", "a"]], "]"]], "-", RowBox[List["a", " ", RowBox[List["LerchPhiClassical", "[", RowBox[List[SubscriptBox["z", "0"], ",", "s", ",", "a"]], "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]]]], SubscriptBox["z", "0"]], "+", RowBox[List[FractionBox["1", RowBox[List["2", " ", SubsuperscriptBox["z", "0", "2"]]]], RowBox[List["(", RowBox[List[RowBox[List["LerchPhiClassical", "[", RowBox[List[SubscriptBox["z", "0"], ",", RowBox[List[RowBox[List["-", "2"]], "+", "s"]], ",", "a"]], "]"]], "-", RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "a"]]]], ")"]], " ", RowBox[List["LerchPhiClassical", "[", RowBox[List[SubscriptBox["z", "0"], ",", RowBox[List[RowBox[List["-", "1"]], "+", "s"]], ",", "a"]], "]"]]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List["1", "+", "a"]], ")"]], " ", RowBox[List["LerchPhiClassical", "[", RowBox[List[SubscriptBox["z", "0"], ",", "s", ",", "a"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]], "2"]]], "+", "\[Ellipsis]"]]]], "/;", RowBox[List["(", RowBox[List["z", "\[Rule]", SubscriptBox["z", "0"]]], ")"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mover> <mi> &#934; </mi> <mo> ^ </mo> </mover> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> s </mi> <mo> , </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mrow> <mover> <mi> &#934; </mi> <mo> ^ </mo> </mover> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> , </mo> <mi> s </mi> <mo> , </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <mover> <mi> &#934; </mi> <mo> ^ </mo> </mover> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> , </mo> <mrow> <mi> s </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mover> <mi> &#934; </mi> <mo> ^ </mo> </mover> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> , </mo> <mi> s </mi> <mo> , </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msubsup> <mi> z </mi> <mn> 0 </mn> <mn> 2 </mn> </msubsup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mover> <mi> &#934; </mi> <mo> ^ </mo> </mover> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> , </mo> <mrow> <mi> s </mi> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> , </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mover> <mi> &#934; </mi> <mo> ^ </mo> </mover> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> , </mo> <mrow> <mi> s </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mover> <mi> &#934; </mi> <mo> ^ </mo> </mover> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> , </mo> <mi> s </mi> <mo> , </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mo> &#8230; </mo> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <apply> <ci> OverHat </ci> <ci> &#934; </ci> </apply> <ci> z </ci> <ci> s </ci> <ci> a </ci> </apply> <apply> <plus /> <apply> <apply> <ci> OverHat </ci> <ci> &#934; </ci> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <ci> s </ci> <ci> a </ci> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <apply> <ci> OverHat </ci> <ci> &#934; </ci> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <apply> <plus /> <ci> s </ci> <cn type='integer'> -1 </cn> </apply> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <apply> <apply> <ci> OverHat </ci> <ci> &#934; </ci> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <ci> s </ci> <ci> a </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <apply> <ci> OverHat </ci> <ci> &#934; </ci> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <apply> <plus /> <ci> s </ci> <cn type='integer'> -2 </cn> </apply> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <apply> <ci> OverHat </ci> <ci> &#934; </ci> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <apply> <plus /> <ci> s </ci> <cn type='integer'> -1 </cn> </apply> <ci> a </ci> </apply> </apply> </apply> <apply> <times /> <ci> a </ci> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <apply> <ci> OverHat </ci> <ci> &#934; </ci> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <ci> s </ci> <ci> a </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <ci> &#8230; </ci> </apply> </apply> <apply> <ci> Rule </ci> <ci> z </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["LerchPhiClassical", "[", RowBox[List["z_", ",", "s_", ",", "a_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["LerchPhiClassical", "[", RowBox[List[SubscriptBox["zz", "0"], ",", "s", ",", "a"]], "]"]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["LerchPhiClassical", "[", RowBox[List[SubscriptBox["zz", "0"], ",", RowBox[List[RowBox[List["-", "1"]], "+", "s"]], ",", "a"]], "]"]], "-", RowBox[List["a", " ", RowBox[List["LerchPhiClassical", "[", RowBox[List[SubscriptBox["zz", "0"], ",", "s", ",", "a"]], "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]]]], SubscriptBox["zz", "0"]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["LerchPhiClassical", "[", RowBox[List[SubscriptBox["zz", "0"], ",", RowBox[List[RowBox[List["-", "2"]], "+", "s"]], ",", "a"]], "]"]], "-", RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["2", " ", "a"]]]], ")"]], " ", RowBox[List["LerchPhiClassical", "[", RowBox[List[SubscriptBox["zz", "0"], ",", RowBox[List[RowBox[List["-", "1"]], "+", "s"]], ",", "a"]], "]"]]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List["1", "+", "a"]], ")"]], " ", RowBox[List["LerchPhiClassical", "[", RowBox[List[SubscriptBox["zz", "0"], ",", "s", ",", "a"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]], "2"]]], RowBox[List["2", " ", SubsuperscriptBox["zz", "0", "2"]]]], "+", "\[Ellipsis]"]], "/;", RowBox[List["(", RowBox[List["z", "\[Rule]", SubscriptBox["zz", "0"]]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.