Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











LerchPhi






Mathematica Notation

Traditional Notation









Zeta Functions and Polylogarithms > LerchPhi[z,s,a] > Series representations > Generalized power series > Expansions at a==a0 > For Phi(z,s,a)





http://functions.wolfram.com/10.06.06.0036.01









  


  










Input Form





LerchPhi[z, s, a] == Sum[(Pochhammer[1 - k - s, k]/k!) (Sum[z^j/((Subscript[a, 0] + j)^k ((Subscript[a, 0] + j)^2)^(s/2)), {j, 0, Floor[-Re[Subscript[a, 0]]]}] + z^Max[Floor[-Re[Subscript[a, 0]]] + 1, 0] LerchPhi[z, k + s, Subscript[a, 0] + Max[Floor[-Re[Subscript[a, 0]]] + 1, 0]]) (a - Subscript[a, 0])^k, {k, 0, Infinity}]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["LerchPhi", "[", RowBox[List["z", ",", "s", ",", "a"]], "]"]], "\[Equal]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "-", "k", "-", "s"]], ",", "k"]], "]"]], RowBox[List["k", "!"]]], RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["Floor", "[", RowBox[List["-", RowBox[List["Re", "[", SubscriptBox["a", "0"], "]"]]]], "]"]]], FractionBox[SuperscriptBox["z", "j"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SubscriptBox["a", "0"], "+", "j"]], ")"]], "k"], SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["(", RowBox[List[SubscriptBox["a", "0"], "+", "j"]], ")"]], "2"], ")"]], FractionBox["s", "2"]]]]]]], "+", RowBox[List[SuperscriptBox["z", RowBox[List["Max", "[", RowBox[List[RowBox[List[RowBox[List["Floor", "[", RowBox[List["-", RowBox[List["Re", "[", SubscriptBox["a", "0"], "]"]]]], "]"]], "+", "1"]], ",", "0"]], "]"]]], RowBox[List["LerchPhi", "[", RowBox[List["z", ",", RowBox[List["k", "+", "s"]], ",", RowBox[List[SubscriptBox["a", "0"], "+", RowBox[List["Max", "[", RowBox[List[RowBox[List[RowBox[List["Floor", "[", RowBox[List["-", RowBox[List["Re", "[", SubscriptBox["a", "0"], "]"]]]], "]"]], "+", "1"]], ",", "0"]], "]"]]]]]], "]"]]]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["a", "-", SubscriptBox["a", "0"]]], ")"]], "k"]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mi> &#934; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> s </mi> <mo> , </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[CapitalPhi]&quot;, &quot;(&quot;, RowBox[List[TagBox[&quot;z&quot;, LerchPhi, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;s&quot;, LerchPhi, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[&quot;a&quot;, LerchPhi, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[List[ZetaDump`e1$, ZetaDump`e2$, ZetaDump`e3$], LerchPhi[ZetaDump`e1$, ZetaDump`e2$, ZetaDump`e3$]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mo> &#63449; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> k </mi> <mo> - </mo> <mi> s </mi> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;k&quot;, &quot;-&quot;, &quot;s&quot;]], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> z </mi> <mrow> <mi> max </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> &#8970; </mo> <mrow> <mo> - </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mo> &#8971; </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#934; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mrow> <mi> k </mi> <mo> + </mo> <mi> s </mi> </mrow> <mo> , </mo> <mrow> <mrow> <mi> max </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> &#8970; </mo> <mrow> <mo> - </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mo> &#8971; </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <msub> <mi> a </mi> <mn> 0 </mn> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[CapitalPhi]&quot;, &quot;(&quot;, RowBox[List[TagBox[&quot;z&quot;, LerchPhi, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;k&quot;, &quot;+&quot;, &quot;s&quot;]], LerchPhi, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[RowBox[List[&quot;max&quot;, &quot;(&quot;, RowBox[List[RowBox[List[RowBox[List[&quot;\[LeftFloor]&quot;, RowBox[List[&quot;-&quot;, RowBox[List[&quot;Re&quot;, &quot;(&quot;, SubscriptBox[&quot;a&quot;, &quot;0&quot;], &quot;)&quot;]]]], &quot;\[RightFloor]&quot;]], &quot;+&quot;, &quot;1&quot;]], &quot;,&quot;, &quot;0&quot;]], &quot;)&quot;]], &quot;+&quot;, SubscriptBox[&quot;a&quot;, &quot;0&quot;]]], LerchPhi, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[List[ZetaDump`e1$, ZetaDump`e2$, ZetaDump`e3$], LerchPhi[ZetaDump`e1$, ZetaDump`e2$, ZetaDump`e3$]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> &#8970; </mo> <mrow> <mo> - </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mo> &#8971; </mo> </mrow> </munderover> <mfrac> <msup> <mi> z </mi> <mi> j </mi> </msup> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <msub> <mi> a </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <msub> <mi> a </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ) </mo> </mrow> <mrow> <mi> s </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <msub> <mi> a </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> LerchPhi </ci> <ci> z </ci> <ci> s </ci> <ci> a </ci> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> <ci> k </ci> </apply> <apply> <power /> <apply> <factorial /> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <apply> <max /> <apply> <plus /> <apply> <floor /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <real /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <ci> LerchPhi </ci> <ci> z </ci> <apply> <plus /> <ci> k </ci> <ci> s </ci> </apply> <apply> <plus /> <apply> <max /> <apply> <plus /> <apply> <floor /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <real /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <real /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <power /> <ci> z </ci> <ci> j </ci> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> j </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> </apply> <ci> k </ci> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> j </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <ci> s </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <ci> k </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["LerchPhi", "[", RowBox[List["z_", ",", "s_", ",", "a_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "-", "k", "-", "s"]], ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List["Floor", "[", RowBox[List["-", RowBox[List["Re", "[", SubscriptBox["aa", "0"], "]"]]]], "]"]]], FractionBox[SuperscriptBox["z", "j"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SubscriptBox["aa", "0"], "+", "j"]], ")"]], "k"], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["(", RowBox[List[SubscriptBox["aa", "0"], "+", "j"]], ")"]], "2"], ")"]], RowBox[List["s", "/", "2"]]]]]]]], "+", RowBox[List[SuperscriptBox["z", RowBox[List["Max", "[", RowBox[List[RowBox[List[RowBox[List["Floor", "[", RowBox[List["-", RowBox[List["Re", "[", SubscriptBox["aa", "0"], "]"]]]], "]"]], "+", "1"]], ",", "0"]], "]"]]], " ", RowBox[List["LerchPhi", "[", RowBox[List["z", ",", RowBox[List["k", "+", "s"]], ",", RowBox[List[SubscriptBox["aa", "0"], "+", RowBox[List["Max", "[", RowBox[List[RowBox[List[RowBox[List["Floor", "[", RowBox[List["-", RowBox[List["Re", "[", SubscriptBox["aa", "0"], "]"]]]], "]"]], "+", "1"]], ",", "0"]], "]"]]]]]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "-", SubscriptBox["aa", "0"]]], ")"]], "k"]]], RowBox[List["k", "!"]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998-2014 Wolfram Research, Inc.