Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











LerchPhi






Mathematica Notation

Traditional Notation









Zeta Functions and Polylogarithms > LerchPhi[z,s,a] > Series representations > Generalized power series > Expansions at a==-n > For Phi^(z,s,a)





http://functions.wolfram.com/10.06.06.0010.01









  


  










Input Form





LerchPhiClassical[z, s, a] == z^n/(a + n)^s + Sum[z^k/(k - n + (a + n))^s, {k, 0, n - 1}] + z^n PolyLog[s, z] + z^n Sum[((Pochhammer[1 - j - s, j] PolyLog[j + s, z])/j!) (a + n)^j, {j, 1, Infinity}] /; Element[n, Integers] && n >= 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["LerchPhiClassical", "[", RowBox[List["z", ",", "s", ",", "a"]], "]"]], "\[Equal]", RowBox[List[FractionBox[SuperscriptBox["z", "n"], SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "n"]], ")"]], "s"]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", "1"]]], FractionBox[SuperscriptBox["z", "k"], SuperscriptBox[RowBox[List["(", RowBox[List["k", "-", "n", "+", RowBox[List["(", RowBox[List["a", "+", "n"]], ")"]]]], ")"]], "s"]]]], "+", RowBox[List[SuperscriptBox["z", "n"], " ", RowBox[List["PolyLog", "[", RowBox[List["s", ",", "z"]], "]"]]]], "+", RowBox[List[SuperscriptBox["z", "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[" ", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "-", "j", "-", "s"]], ",", "j"]], "]"]], " ", RowBox[List["PolyLog", "[", RowBox[List[RowBox[List["j", "+", "s"]], ",", "z"]], "]"]]]]]], RowBox[List["j", "!"]]], SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "n"]], ")"]], "j"]]]]]]]]]]], " ", "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mover> <mi> &#934; </mi> <mo> ^ </mo> </mover> <mo> ( </mo> <mrow> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox[&quot;z&quot;, Rule[Editable, True]] </annotation> </semantics> <mo> , </mo> <semantics> <mi> s </mi> <annotation encoding='Mathematica'> TagBox[&quot;s&quot;, Rule[Editable, True]] </annotation> </semantics> <mo> , </mo> <semantics> <mi> a </mi> <annotation encoding='Mathematica'> TagBox[&quot;a&quot;, Rule[Editable, True]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <msup> <mi> z </mi> <mi> n </mi> </msup> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mi> s </mi> </msup> </mfrac> <mo> + </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mfrac> <msup> <mi> z </mi> <mi> k </mi> </msup> <msup> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> n </mi> <mo> + </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mi> s </mi> </msup> </mfrac> </mrow> <mo> + </mo> <mrow> <msup> <mi> z </mi> <mi> n </mi> </msup> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mi> s </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <msup> <mi> z </mi> <mi> n </mi> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> j </mi> <mo> - </mo> <mi> s </mi> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;j&quot;, &quot;-&quot;, &quot;s&quot;]], &quot;)&quot;]], &quot;j&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mrow> <mi> j </mi> <mo> + </mo> <mi> s </mi> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <mi> j </mi> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msup> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <apply> <ci> OverHat </ci> <ci> &#934; </ci> </apply> <apply> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> <ci> z </ci> </apply> <apply> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> <ci> s </ci> </apply> <apply> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> <ci> a </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <ci> n </ci> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> n </ci> </apply> <ci> s </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <power /> <ci> z </ci> <ci> k </ci> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <plus /> <ci> a </ci> <ci> n </ci> </apply> </apply> <ci> s </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <ci> z </ci> <ci> n </ci> </apply> <apply> <ci> PolyLog </ci> <ci> s </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <ci> z </ci> <ci> n </ci> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> <ci> j </ci> </apply> <apply> <ci> PolyLog </ci> <apply> <plus /> <ci> j </ci> <ci> s </ci> </apply> <ci> z </ci> </apply> <apply> <power /> <apply> <factorial /> <ci> j </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> n </ci> </apply> <ci> j </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <ci> &#8469; </ci> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["LerchPhiClassical", "[", RowBox[List["z_", ",", "s_", ",", "a_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[SuperscriptBox["z", "n"], SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "n"]], ")"]], "s"]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", "1"]]], FractionBox[SuperscriptBox["z", "k"], SuperscriptBox[RowBox[List["(", RowBox[List["k", "-", "n", "+", RowBox[List["(", RowBox[List["a", "+", "n"]], ")"]]]], ")"]], "s"]]]], "+", RowBox[List[SuperscriptBox["z", "n"], " ", RowBox[List["PolyLog", "[", RowBox[List["s", ",", "z"]], "]"]]]], "+", RowBox[List[SuperscriptBox["z", "n"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "-", "j", "-", "s"]], ",", "j"]], "]"]], " ", RowBox[List["PolyLog", "[", RowBox[List[RowBox[List["j", "+", "s"]], ",", "z"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "n"]], ")"]], "j"]]], RowBox[List["j", "!"]]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.