Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











LerchPhi






Mathematica Notation

Traditional Notation









Zeta Functions and Polylogarithms > LerchPhi[z,s,a] > Series representations > Other series representations > Other series representations > For Phi^(z,s,a)





http://functions.wolfram.com/10.06.06.0015.01









  


  










Input Form





LerchPhiClassical[Exp[(2 Pi I p)/q], s, a] == Sum[ZetaClassical[s, (a + k - 1)/q] Exp[(2 (k - 1) Pi I p)/q], {k, 1, q}]/ q^s /; Element[p, Integers] && p >= 0 && Element[q, Integers] && q > 0 && p <= q










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["LerchPhiClassical", "[", RowBox[List[RowBox[List["Exp", "[", FractionBox[RowBox[List["2", "\[Pi]", " ", "\[ImaginaryI]", " ", "p"]], "q"], "]"]], ",", "s", ",", "a"]], "]"]], "\[Equal]", RowBox[List[SuperscriptBox["q", RowBox[List["-", "s"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "q"], RowBox[List[RowBox[List["ZetaClassical", "[", RowBox[List["s", ",", FractionBox[RowBox[List["a", "+", "k", "-", "1"]], "q"]]], "]"]], RowBox[List["Exp", "[", FractionBox[RowBox[List["2", RowBox[List["(", RowBox[List["k", "-", "1"]], ")"]], "\[Pi]", " ", "\[ImaginaryI]", " ", "p"]], "q"], "]"]]]]]]]]]], "/;", RowBox[List[RowBox[List["Element", "[", RowBox[List["p", ",", "Integers"]], "]"]], "\[And]", RowBox[List["p", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["Element", "[", RowBox[List["q", ",", "Integers"]], "]"]], "\[And]", RowBox[List["q", ">", "0"]], "\[And]", RowBox[List["p", "\[LessEqual]", "q"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mover> <mi> &#934; </mi> <mo> ^ </mo> </mover> <mo> ( </mo> <mrow> <mrow> <mi> exp </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> p </mi> </mrow> <mi> q </mi> </mfrac> <mo> ) </mo> </mrow> <mo> , </mo> <mi> s </mi> <mo> , </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[OverscriptBox[&quot;\[CapitalPhi]&quot;, &quot;^&quot;], &quot;(&quot;, RowBox[List[RowBox[List[&quot;exp&quot;, &quot;(&quot;, FractionBox[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Pi]&quot;, &quot; &quot;, &quot;\[ImaginaryI]&quot;, &quot; &quot;, &quot;p&quot;]], &quot;q&quot;], &quot;)&quot;]], &quot;,&quot;, TagBox[&quot;s&quot;, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;a&quot;, Rule[Editable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[List[$CellContext`e1, $CellContext`e2, $CellContext`e3], LerchPhi[$CellContext`e1, $CellContext`e2, $CellContext`e3]]]] </annotation> </semantics> <mo> &#10869; </mo> <mrow> <msup> <mi> q </mi> <mrow> <mo> - </mo> <mi> s </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> q </mi> </munderover> <mrow> <semantics> <mrow> <mover> <mi> &#950; </mi> <mo> ^ </mo> </mover> <mo> ( </mo> <mrow> <mi> s </mi> <mo> , </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mi> q </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[OverscriptBox[&quot;\[Zeta]&quot;, &quot;^&quot;], &quot;(&quot;, RowBox[List[TagBox[&quot;s&quot;, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[RowBox[List[&quot;a&quot;, &quot;+&quot;, &quot;k&quot;, &quot;-&quot;, &quot;1&quot;]], &quot;q&quot;], Rule[Editable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[List[$CellContext`e1, $CellContext`e2], Zeta[$CellContext`e1, $CellContext`e2]]]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mi> exp </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> p </mi> </mrow> <mi> q </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> p </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mi> q </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> <mo> &#8743; </mo> <mrow> <mi> p </mi> <mo> &#8804; </mo> <mi> q </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <mrow> <mrow> <semantics> <mrow> <mover> <mi> &#934; </mi> <mo> ^ </mo> </mover> <mo> ( </mo> <mrow> <mrow> <mi> exp </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> p </mi> </mrow> <mi> q </mi> </mfrac> <mo> ) </mo> </mrow> <mo> , </mo> <mi> s </mi> <mo> , </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[OverscriptBox[&quot;\[CapitalPhi]&quot;, &quot;^&quot;], &quot;(&quot;, RowBox[List[RowBox[List[&quot;exp&quot;, &quot;(&quot;, FractionBox[RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Pi]&quot;, &quot; &quot;, &quot;\[ImaginaryI]&quot;, &quot; &quot;, &quot;p&quot;]], &quot;q&quot;], &quot;)&quot;]], &quot;,&quot;, TagBox[&quot;s&quot;, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;a&quot;, Rule[Editable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[List[$CellContext`e1, $CellContext`e2, $CellContext`e3], LerchPhi[$CellContext`e1, $CellContext`e2, $CellContext`e3]]]] </annotation> </semantics> <mo> &#10869; </mo> <mrow> <msup> <mi> q </mi> <mrow> <mo> - </mo> <mi> s </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> q </mi> </munderover> <mrow> <semantics> <mrow> <mover> <mi> &#950; </mi> <mo> ^ </mo> </mover> <mo> ( </mo> <mrow> <mi> s </mi> <mo> , </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mi> q </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[OverscriptBox[&quot;\[Zeta]&quot;, &quot;^&quot;], &quot;(&quot;, RowBox[List[TagBox[&quot;s&quot;, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[RowBox[List[&quot;a&quot;, &quot;+&quot;, &quot;k&quot;, &quot;-&quot;, &quot;1&quot;]], &quot;q&quot;], Rule[Editable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[List[$CellContext`e1, $CellContext`e2], Zeta[$CellContext`e1, $CellContext`e2]]]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mi> exp </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> p </mi> </mrow> <mi> q </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> p </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mi> q </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> <mo> &#8743; </mo> <mrow> <mi> p </mi> <mo> &#8804; </mo> <mi> q </mi> </mrow> </mrow> </mrow> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["LerchPhiClassical", "[", RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["2", " ", "\[Pi]", " ", "\[ImaginaryI]", " ", "p_"]], "q_"]], ",", "s_", ",", "a_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SuperscriptBox["q", RowBox[List["-", "s"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "q"], RowBox[List[RowBox[List["ZetaClassical", "[", RowBox[List["s", ",", FractionBox[RowBox[List["a", "+", "k", "-", "1"]], "q"]]], "]"]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List["k", "-", "1"]], ")"]], " ", "\[Pi]", " ", "\[ImaginaryI]", " ", "p"]], "q"]]]]]]]], "/;", RowBox[List[RowBox[List["p", "\[Element]", "Integers"]], "&&", RowBox[List["p", "\[GreaterEqual]", "0"]], "&&", RowBox[List["q", "\[Element]", "Integers"]], "&&", RowBox[List["q", ">", "0"]], "&&", RowBox[List["p", "\[LessEqual]", "q"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.