Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











LerchPhi






Mathematica Notation

Traditional Notation









Zeta Functions and Polylogarithms > LerchPhi[z,s,a] > Integral representations > On the real axis > Of the direct function > For Phi(z,s,a)





http://functions.wolfram.com/10.06.07.0002.01









  


  










Input Form





LerchPhi[z, s, a] == 1/(2 a^s) + Integrate[z^t/(a + t)^s, {t, 0, Infinity}] - 2 Integrate[Sin[t Log[z] - s ArcTan[t/a]]/((a^2 + t^2)^(s/2) (E^(2 Pi t) - 1)), {t, 0, Infinity}] /; Re[a] > 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["LerchPhi", "[", RowBox[List["z", ",", "s", ",", "a"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["2", " ", SuperscriptBox["a", "s"]]]], "+", RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Infinity]"], RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "t"]], ")"]], RowBox[List["-", "s"]]], " ", SuperscriptBox["z", "t"]]], RowBox[List["\[DifferentialD]", "t"]]]]]], "-", RowBox[List["2", " ", RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Infinity]"], RowBox[List[FractionBox[RowBox[List["Sin", "[", RowBox[List[RowBox[List["t", " ", RowBox[List["Log", "[", "z", "]"]]]], "-", RowBox[List["s", " ", RowBox[List["ArcTan", "[", FractionBox["t", "a"], "]"]]]]]], "]"]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["t", "2"]]], ")"]], RowBox[List["s", "/", "2"]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[Pi]", " ", "t"]]], "-", "1"]], ")"]]]]], RowBox[List["\[DifferentialD]", "t"]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["Re", "[", "a", "]"]], ">", "0"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mi> &#934; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> s </mi> <mo> , </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[CapitalPhi]&quot;, &quot;(&quot;, RowBox[List[TagBox[&quot;z&quot;, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;s&quot;, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;a&quot;, Rule[Editable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[List[$CellContext`e1, $CellContext`e2, $CellContext`e3], LerchPhi[$CellContext`e1, $CellContext`e2, $CellContext`e3]]]] </annotation> </semantics> <mo> &#10869; </mo> <mrow> <mrow> <msubsup> <mo> &#8747; </mo> <mn> 0 </mn> <mi> &#8734; </mi> </msubsup> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> t </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> s </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> t </mi> </msup> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> t </mi> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <msubsup> <mo> &#8747; </mo> <mn> 0 </mn> <mi> &#8734; </mi> </msubsup> <mrow> <mfrac> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> t </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> s </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> tan </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mi> t </mi> <mi> a </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> t </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> s </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> t </mi> </mrow> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> t </mi> </mrow> </mrow> </mrow> </mrow> <mo> + </mo> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mi> s </mi> </msup> </mrow> </mfrac> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> &gt; </mo> <mn> 0 </mn> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> LerchPhi </ci> <ci> z </ci> <ci> s </ci> <ci> a </ci> </apply> <apply> <plus /> <apply> <int /> <bvar> <ci> t </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> t </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> t </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <int /> <bvar> <ci> t </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <sin /> <apply> <plus /> <apply> <times /> <ci> t </ci> <apply> <ln /> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> s </ci> <apply> <arctan /> <apply> <times /> <ci> t </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> t </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> s </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> <ci> t </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> a </ci> <ci> s </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <gt /> <apply> <real /> <ci> a </ci> </apply> <cn type='integer'> 0 </cn> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["LerchPhi", "[", RowBox[List["z_", ",", "s_", ",", "a_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox["1", RowBox[List["2", " ", SuperscriptBox["a", "s"]]]], "+", RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Infinity]"], RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "t"]], ")"]], RowBox[List["-", "s"]]], " ", SuperscriptBox["z", "t"]]], RowBox[List["\[DifferentialD]", "t"]]]]]], "-", RowBox[List["2", " ", RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Infinity]"], RowBox[List[FractionBox[RowBox[List["Sin", "[", RowBox[List[RowBox[List["t", " ", RowBox[List["Log", "[", "z", "]"]]]], "-", RowBox[List["s", " ", RowBox[List["ArcTan", "[", FractionBox["t", "a"], "]"]]]]]], "]"]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], "+", SuperscriptBox["t", "2"]]], ")"]], RowBox[List["s", "/", "2"]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[Pi]", " ", "t"]]], "-", "1"]], ")"]]]]], RowBox[List["\[DifferentialD]", "t"]]]]]]]]]], "/;", RowBox[List[RowBox[List["Re", "[", "a", "]"]], ">", "0"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.