Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











LerchPhi






Mathematica Notation

Traditional Notation









Zeta Functions and Polylogarithms > LerchPhi[z,s,a] > Differentiation > Symbolic differentiation > With respect to z > For Phi^(z,s,a)





http://functions.wolfram.com/10.06.20.0009.02









  


  










Input Form





D[LerchPhiClassical[z, s, a], {z, n}] == Sum[StirlingS1[n, j] Binomial[j, p] (z^(Max[Floor[-Re[a]], 0] + 1) LerchPhi[z, s - p, a + Max[Floor[-Re[a]], 0] + 1] + Sum[z^k/(a + k)^(s - p), {k, 0, Floor[-Re[a]]}]) (-a)^(j - p), {j, 1, n}, {p, 0, j}]/z^n /; Element[n, Integers] && n >= 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["z", ",", "n"]], "}"]]], RowBox[List["LerchPhiClassical", "[", RowBox[List["z", ",", "s", ",", "a"]], "]"]]]], "\[Equal]", RowBox[List[SuperscriptBox["z", RowBox[List["-", "n"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["p", "=", "0"]], "j"], RowBox[List[RowBox[List["StirlingS1", "[", RowBox[List["n", ",", "j"]], "]"]], RowBox[List["Binomial", "[", RowBox[List["j", ",", "p"]], "]"]], RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["z", RowBox[List[RowBox[List["Max", "[", RowBox[List[RowBox[List["Floor", "[", RowBox[List["-", RowBox[List["Re", "[", "a", "]"]]]], "]"]], ",", "0"]], "]"]], "+", "1"]]], RowBox[List["LerchPhi", "[", RowBox[List["z", ",", RowBox[List["s", "-", "p"]], ",", RowBox[List["a", "+", RowBox[List["Max", "[", RowBox[List[RowBox[List["Floor", "[", RowBox[List["-", RowBox[List["Re", "[", "a", "]"]]]], "]"]], ",", "0"]], "]"]], "+", "1"]]]], "]"]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List["-", RowBox[List["Re", "[", "a", "]"]]]], "]"]]], FractionBox[SuperscriptBox["z", "k"], SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "k"]], ")"]], RowBox[List["s", "-", "p"]]]]]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["-", "a"]], ")"]], RowBox[List["j", "-", "p"]]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mi> n </mi> </msup> <semantics> <mrow> <mover> <mi> &#934; </mi> <mo> ^ </mo> </mover> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> s </mi> <mo> , </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[OverscriptBox[&quot;\[CapitalPhi]&quot;, &quot;^&quot;], &quot;(&quot;, RowBox[List[TagBox[&quot;z&quot;, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;s&quot;, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;a&quot;, Rule[Editable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[List[$CellContext`e1, $CellContext`e2, $CellContext`e3], LerchPhi[$CellContext`e1, $CellContext`e2, $CellContext`e3]]]] </annotation> </semantics> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> z </mi> <mi> n </mi> </msup> </mrow> </mfrac> <mo> &#10869; </mo> <mrow> <msup> <mi> z </mi> <mrow> <mo> - </mo> <mi> n </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> p </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> j </mi> </munderover> <mrow> <msubsup> <semantics> <mi> S </mi> <annotation encoding='Mathematica'> TagBox[&quot;S&quot;, StirlingS1] </annotation> </semantics> <mi> n </mi> <mrow> <mo> ( </mo> <mi> j </mi> <mo> ) </mo> </mrow> </msubsup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> j </mi> </mtd> </mtr> <mtr> <mtd> <mi> p </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;j&quot;, Identity, Rule[Editable, True], Rule[Selectable, True]]], List[TagBox[&quot;p&quot;, Identity, Rule[Editable, True], Rule[Selectable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> z </mi> <mrow> <mrow> <mi> max </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> &#8970; </mo> <mrow> <mo> - </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> &#8971; </mo> </mrow> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#934; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mrow> <mi> s </mi> <mo> - </mo> <mi> p </mi> </mrow> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> max </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> &#8970; </mo> <mrow> <mo> - </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> &#8971; </mo> </mrow> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[CapitalPhi]&quot;, &quot;(&quot;, RowBox[List[TagBox[&quot;z&quot;, LerchPhi, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;s&quot;, &quot;-&quot;, &quot;p&quot;]], LerchPhi, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;a&quot;, &quot;+&quot;, RowBox[List[&quot;max&quot;, &quot;(&quot;, RowBox[List[RowBox[List[&quot;\[LeftFloor]&quot;, RowBox[List[&quot;-&quot;, RowBox[List[&quot;Re&quot;, &quot;(&quot;, &quot;a&quot;, &quot;)&quot;]]]], &quot;\[RightFloor]&quot;]], &quot;,&quot;, &quot;0&quot;]], &quot;)&quot;]], &quot;+&quot;, &quot;1&quot;]], LerchPhi, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[List[ZetaDump`e1$, ZetaDump`e2$, ZetaDump`e3$], LerchPhi[ZetaDump`e1$, ZetaDump`e2$, ZetaDump`e3$]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> &#8970; </mo> <mrow> <mo> - </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> &#8971; </mo> </mrow> </munderover> <mfrac> <msup> <mi> z </mi> <mi> k </mi> </msup> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> s </mi> <mo> - </mo> <mi> p </mi> </mrow> </msup> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> j </mi> <mo> - </mo> <mi> p </mi> </mrow> </msup> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <ci> n </ci> </degree> </bvar> <apply> <ci> LerchPhi </ci> <ci> z </ci> <ci> s </ci> <ci> a </ci> </apply> </apply> <apply> <times /> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <apply> <sum /> <bvar> <ci> p </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> j </ci> </uplimit> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <ci> StirlingS1 </ci> <ci> n </ci> <ci> j </ci> </apply> <apply> <ci> Binomial </ci> <ci> j </ci> <ci> p </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <apply> <plus /> <apply> <max /> <apply> <floor /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <real /> <ci> a </ci> </apply> </apply> </apply> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> LerchPhi </ci> <ci> z </ci> <apply> <plus /> <ci> s </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> <apply> <plus /> <ci> a </ci> <apply> <max /> <apply> <floor /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <real /> <ci> a </ci> </apply> </apply> </apply> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <real /> <ci> a </ci> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <power /> <ci> z </ci> <ci> k </ci> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> k </ci> </apply> <apply> <plus /> <ci> s </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <plus /> <ci> j </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <ci> &#8469; </ci> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["z_", ",", "n_"]], "}"]]]]], RowBox[List["LerchPhiClassical", "[", RowBox[List["z_", ",", "s_", ",", "a_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SuperscriptBox["z", RowBox[List["-", "n"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["p", "=", "0"]], "j"], RowBox[List[RowBox[List["StirlingS1", "[", RowBox[List["n", ",", "j"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["j", ",", "p"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["z", RowBox[List[RowBox[List["Max", "[", RowBox[List[RowBox[List["Floor", "[", RowBox[List["-", RowBox[List["Re", "[", "a", "]"]]]], "]"]], ",", "0"]], "]"]], "+", "1"]]], " ", RowBox[List["LerchPhi", "[", RowBox[List["z", ",", RowBox[List["s", "-", "p"]], ",", RowBox[List["a", "+", RowBox[List["Max", "[", RowBox[List[RowBox[List["Floor", "[", RowBox[List["-", RowBox[List["Re", "[", "a", "]"]]]], "]"]], ",", "0"]], "]"]], "+", "1"]]]], "]"]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List["-", RowBox[List["Re", "[", "a", "]"]]]], "]"]]], FractionBox[SuperscriptBox["z", "k"], SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "k"]], ")"]], RowBox[List["s", "-", "p"]]]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "a"]], ")"]], RowBox[List["j", "-", "p"]]]]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.