Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
PolyLog






Mathematica Notation

Traditional Notation









Zeta Functions and Polylogarithms > PolyLog[nu,z] > Series representations > Generalized power series > Expansions at z==1 > For the function itself > Special cases





http://functions.wolfram.com/10.08.06.0034.01









  


  










Input Form





PolyLog[3, z] \[Proportional] Zeta[3] + (Pi^2/6) (z - 1) + ((9 - Pi^2)/12) (z - 1)^2 + ((2 Pi^2 - 21)/36) (z - 1)^3 + \[Ellipsis] - ((z - 1)^2/2) (2 - z + (11/12) (z - 1)^2 - (5/6) (z - 1)^3 + \[Ellipsis]) Log[1 - z] /; (z -> 1)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["PolyLog", "[", RowBox[List["3", ",", "z"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List["Zeta", "[", "3", "]"]], "+", RowBox[List[FractionBox[SuperscriptBox["\[Pi]", "2"], "6"], " ", RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]]]], "+", RowBox[List[FractionBox[RowBox[List["9", "-", SuperscriptBox["\[Pi]", "2"]]], "12"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], "2"]]], "+", RowBox[List[FractionBox[RowBox[List[RowBox[List["2", " ", SuperscriptBox["\[Pi]", "2"]]], "-", "21"]], "36"], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], "3"]]], "+", "\[Ellipsis]", "-", RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], "2"], "2"], " ", RowBox[List["(", RowBox[List["2", "-", "z", "+", RowBox[List[FractionBox["11", "12"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], "2"]]], "-", RowBox[List[FractionBox["5", "6"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], "3"]]], "+", "\[Ellipsis]"]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]]]]]]]], "/;", RowBox[List["(", RowBox[List["z", "\[Rule]", "1"]], ")"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 3 </mn> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;3&quot;, Zeta, Rule[Editable, True], Rule[Selectable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mo> + </mo> <mrow> <mfrac> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mn> 6 </mn> </mfrac> <mo> &#8290; </mo> <mtext> </mtext> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mn> 9 </mn> <mo> - </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> </mrow> <mn> 12 </mn> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mn> 21 </mn> </mrow> <mn> 36 </mn> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mo> &#8230; </mo> <mo> - </mo> <mrow> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mtext> </mtext> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> z </mi> <mo> + </mo> <mrow> <mfrac> <mn> 11 </mn> <mn> 12 </mn> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 5 </mn> <mn> 6 </mn> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mo> &#8230; </mo> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> PolyLog </ci> <cn type='integer'> 3 </cn> <ci> z </ci> </apply> <apply> <plus /> <apply> <ci> Zeta </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 6 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <cn type='integer'> 9 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 12 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -21 </cn> </apply> <apply> <power /> <cn type='integer'> 36 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <ci> &#8230; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='rational'> 11 <sep /> 12 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 5 <sep /> 6 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <ci> &#8230; </ci> </apply> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ci> Rule </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["PolyLog", "[", RowBox[List["3", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["Zeta", "[", "3", "]"]], "+", RowBox[List[FractionBox["1", "6"], " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]]]], "+", RowBox[List[FractionBox["1", "12"], " ", RowBox[List["(", RowBox[List["9", "-", SuperscriptBox["\[Pi]", "2"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], "2"]]], "+", RowBox[List[FractionBox["1", "36"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox["\[Pi]", "2"]]], "-", "21"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], "3"]]], "+", "\[Ellipsis]", "-", RowBox[List[FractionBox["1", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], "2"], " ", RowBox[List["(", RowBox[List["2", "-", "z", "+", RowBox[List[FractionBox["11", "12"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], "2"]]], "-", RowBox[List[FractionBox["5", "6"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], "3"]]], "+", "\[Ellipsis]"]], ")"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]]]]]], "/;", RowBox[List["(", RowBox[List["z", "\[Rule]", "1"]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.