Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
PolyLog






Mathematica Notation

Traditional Notation









Zeta Functions and Polylogarithms > PolyLog[nu,z] > Series representations > Generalized power series > Expansions at z==1 > For the function itself > Special cases





http://functions.wolfram.com/10.08.06.0036.01









  


  










Input Form





PolyLog[n, z] == (-((z - 1)^(n - 1)/(n - 1)!)) Sum[Subscript[p, n - 1, k] (z - 1)^k (-EulerGamma - PolyGamma[n] + Log[Log[z]/(z - 1)]), {k, 0, Infinity}] + Zeta[n] + Sum[((Zeta[n - j] (z - 1)^j)/j!) Sum[Subscript[p, j, k] (z - 1)^k, {k, 0, Infinity}], {j, 1, n - 2}] + Sum[((Zeta[n - j] (z - 1)^j)/j!) Sum[Subscript[p, j, k] (z - 1)^k, {k, 0, Infinity}], {j, n, Infinity}] - ((z - 1)^(n - 1)/(n - 1)!) (I Pi + 2 I Pi Floor[-(Arg[z - 1]/(2 Pi)) - (1/(2 Pi)) Arg[Log[z]/(z - 1)]] + Log[z - 1]) Sum[Subscript[p, n - 1, k] (z - 1)^k, {k, 0, Infinity}] /; Subscript[p, j, 0] == 1 && Subscript[p, j, k] == (1/k) Sum[(((-1)^i (j i - k + i))/(i + 1)) Subscript[p, j, k - i], {i, 1, k}] && Element[k, Integers] && k > 0 && Element[n, Integers] && n > 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["PolyLog", "[", RowBox[List["n", ",", "z"]], "]"]], "\[Equal]", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], RowBox[List["n", "-", "1"]]], RowBox[List[RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]], "!"]]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[SubscriptBox["p", RowBox[List[RowBox[List["n", "-", "1"]], ",", "k"]]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], "k"], RowBox[List["(", RowBox[List[RowBox[List["-", "EulerGamma"]], "-", RowBox[List["PolyGamma", "[", "n", "]"]], "+", RowBox[List["Log", "[", FractionBox[RowBox[List["Log", "[", "z", "]"]], RowBox[List["z", "-", "1"]]], "]"]]]], ")"]]]]]]]], "+", RowBox[List["Zeta", "[", "n", "]"]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], RowBox[List["n", "-", "2"]]], RowBox[List[FractionBox[RowBox[List[" ", RowBox[List[RowBox[List["Zeta", "[", RowBox[List["n", "-", "j"]], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], "j"]]]]], RowBox[List["j", "!"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[SubscriptBox["p", RowBox[List["j", ",", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], "k"]]]]]]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "n"]], "\[Infinity]"], " ", RowBox[List[FractionBox[RowBox[List[" ", RowBox[List[RowBox[List["Zeta", "[", RowBox[List["n", "-", "j"]], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], "j"]]]]], RowBox[List["j", "!"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[SubscriptBox["p", RowBox[List["j", ",", "k"]]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], "k"]]]]]]]]], "-", RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], RowBox[List["n", "-", "1"]]], RowBox[List[RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]], "!"]]], RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["Floor", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", "1"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]]]], "-", RowBox[List[FractionBox["1", RowBox[List["2", " ", "\[Pi]"]]], RowBox[List["Arg", "[", FractionBox[RowBox[List["Log", "[", "z", "]"]], RowBox[List["z", "-", "1"]]], "]"]]]]]], "]"]]]], "+", RowBox[List["Log", "[", RowBox[List["z", "-", "1"]], "]"]]]], ")"]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], " ", RowBox[List[SubscriptBox["p", RowBox[List[RowBox[List["n", "-", "1"]], ",", "k"]]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], "k"]]]]]]]]], ")"]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["p", RowBox[List["j", ",", "0"]]], "\[Equal]", "1"]], "\[And]", RowBox[List[SubscriptBox["p", RowBox[List["j", ",", "k"]]], "\[Equal]", RowBox[List[FractionBox["1", "k"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "1"]], "k"], " ", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "i"], RowBox[List["(", RowBox[List[RowBox[List["j", " ", "i"]], "-", "k", "+", "i"]], ")"]]]], RowBox[List["i", "+", "1"]]], " ", SubscriptBox["p", RowBox[List["j", ",", RowBox[List["k", "-", "i"]]]]]]]]]]]]], "\[And]", RowBox[List["k", "\[Element]", "Integers"]], "\[And]", RowBox[List["k", ">", "0"]], "\[And]", RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", ">", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mi> n </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> </mrow> <mo> &#8971; </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <msub> <mi> p </mi> <mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mi> k </mi> </mrow> </msub> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mtext> </mtext> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <msub> <mi> p </mi> <mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mi> k </mi> </mrow> </msub> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> n </mi> <mo> ) </mo> </mrow> <mo> - </mo> <semantics> <mi> &#8509; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubledGamma]&quot;, Function[List[], EulerGamma]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 2 </mn> </mrow> </munderover> <mrow> <mfrac> <mrow> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> j </mi> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[RowBox[List[&quot;n&quot;, &quot;-&quot;, &quot;j&quot;]], Zeta, Rule[Editable, True], Rule[Selectable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msup> </mrow> <mrow> <mi> j </mi> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <msub> <mi> p </mi> <mrow> <mi> j </mi> <mo> , </mo> <mi> k </mi> </mrow> </msub> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mi> n </mi> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mrow> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> j </mi> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[RowBox[List[&quot;n&quot;, &quot;-&quot;, &quot;j&quot;]], Zeta, Rule[Editable, True], Rule[Selectable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msup> </mrow> <mrow> <mi> j </mi> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <msub> <mi> p </mi> <mrow> <mi> j </mi> <mo> , </mo> <mi> k </mi> </mrow> </msub> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> </mrow> </mrow> </mrow> <mo> + </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> n </mi> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, TagBox[&quot;n&quot;, Zeta, Rule[Editable, True], Rule[Selectable, True]], &quot;)&quot;]], InterpretTemplate[Function[BoxForm`e$, Zeta[BoxForm`e$]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <msub> <mi> p </mi> <mrow> <mi> j </mi> <mo> , </mo> <mn> 0 </mn> </mrow> </msub> <mo> &#63449; </mo> <mn> 1 </mn> </mrow> <mo> &#8743; </mo> <mrow> <msub> <mi> p </mi> <mrow> <mi> j </mi> <mo> , </mo> <mi> k </mi> </mrow> </msub> <mo> &#63449; </mo> <mrow> <mfrac> <mn> 1 </mn> <mi> k </mi> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> i </mi> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> j </mi> <mo> &#8290; </mo> <mi> i </mi> </mrow> <mo> + </mo> <mi> i </mi> <mo> - </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> i </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> &#8290; </mo> <msub> <mi> p </mi> <mrow> <mi> j </mi> <mo> , </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> i </mi> </mrow> </mrow> </msub> </mrow> </mrow> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mi> k </mi> <mo> &#8712; </mo> <msup> <semantics> <mi> &#8469; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalN]&quot;, Function[List[], Integers]] </annotation> </semantics> <mo> + </mo> </msup> </mrow> <mo> &#8743; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <msup> <semantics> <mi> &#8469; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalN]&quot;, Function[List[], Integers]] </annotation> </semantics> <mo> + </mo> </msup> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> PolyLog </ci> <ci> n </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <imaginaryi /> <pi /> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <pi /> <apply> <floor /> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <arg /> <apply> <times /> <apply> <ln /> <ci> z </ci> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <arg /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ln /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <ci> Subscript </ci> <ci> p </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <ci> k </ci> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <ci> k </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <ci> Subscript </ci> <ci> p </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <ci> k </ci> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <ci> k </ci> </apply> <apply> <plus /> <apply> <ln /> <apply> <times /> <apply> <ln /> <ci> z </ci> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <ci> n </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <eulergamma /> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> n </ci> <cn type='integer'> -2 </cn> </apply> </uplimit> <apply> <times /> <apply> <times /> <apply> <ci> Zeta </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <ci> j </ci> </apply> <apply> <power /> <apply> <factorial /> <ci> j </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> j </ci> <ci> k </ci> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <ci> n </ci> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <ci> Zeta </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <ci> j </ci> </apply> <apply> <power /> <apply> <factorial /> <ci> j </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> j </ci> <ci> k </ci> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> <apply> <ci> Zeta </ci> <ci> n </ci> </apply> </apply> </apply> <apply> <and /> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> j </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> j </ci> <ci> k </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> i </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> i </ci> </apply> <apply> <plus /> <apply> <times /> <ci> j </ci> <ci> i </ci> </apply> <ci> i </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> i </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> p </ci> <ci> j </ci> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> i </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> k </ci> <apply> <ci> SuperPlus </ci> <integers /> </apply> </apply> <apply> <in /> <ci> n </ci> <apply> <ci> SuperPlus </ci> <integers /> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["PolyLog", "[", RowBox[List["n_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], RowBox[List["n", "-", "1"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[SubscriptBox["p", RowBox[List[RowBox[List["n", "-", "1"]], ",", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], "k"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "EulerGamma"]], "-", RowBox[List["PolyGamma", "[", "n", "]"]], "+", RowBox[List["Log", "[", FractionBox[RowBox[List["Log", "[", "z", "]"]], RowBox[List["z", "-", "1"]]], "]"]]]], ")"]]]]]]]], RowBox[List[RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]], "!"]]]]], "+", RowBox[List["Zeta", "[", "n", "]"]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], RowBox[List["n", "-", "2"]]], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Zeta", "[", RowBox[List["n", "-", "j"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], "j"]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[SubscriptBox["p", RowBox[List["j", ",", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], "k"]]]]]]], RowBox[List["j", "!"]]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "n"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Zeta", "[", RowBox[List["n", "-", "j"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], "j"]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[SubscriptBox["p", RowBox[List["j", ",", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], "k"]]]]]]], RowBox[List["j", "!"]]]]], "-", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], RowBox[List["n", "-", "1"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["Floor", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["Arg", "[", RowBox[List["z", "-", "1"]], "]"]], RowBox[List["2", " ", "\[Pi]"]]]]], "-", FractionBox[RowBox[List["Arg", "[", FractionBox[RowBox[List["Log", "[", "z", "]"]], RowBox[List["z", "-", "1"]]], "]"]], RowBox[List["2", " ", "\[Pi]"]]]]], "]"]]]], "+", RowBox[List["Log", "[", RowBox[List["z", "-", "1"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[SubscriptBox["p", RowBox[List[RowBox[List["n", "-", "1"]], ",", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], "k"]]]]]]], RowBox[List[RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]], "!"]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["p", RowBox[List["j", ",", "0"]]], "\[Equal]", "1"]], "&&", RowBox[List[SubscriptBox["p", RowBox[List["j", ",", "k"]]], "\[Equal]", FractionBox[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "1"]], "k"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "i"], " ", RowBox[List["(", RowBox[List[RowBox[List["j", " ", "i"]], "-", "k", "+", "i"]], ")"]]]], ")"]], " ", SubscriptBox["p", RowBox[List["j", ",", RowBox[List["k", "-", "i"]]]]]]], RowBox[List["i", "+", "1"]]]]], "k"]]], "&&", RowBox[List["k", "\[Element]", "Integers"]], "&&", RowBox[List["k", ">", "0"]], "&&", RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998-2014 Wolfram Research, Inc.