Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
PolyLog






Mathematica Notation

Traditional Notation









Zeta Functions and Polylogarithms > PolyLog[nu,z] > Identities > Functional identities > General cases > Involving two polyilogarithms





http://functions.wolfram.com/10.08.17.0057.01









  


  










Input Form





PolyLog[\[Nu], z] == (-E^(Pi I \[Nu])) PolyLog[\[Nu], 1/z] + ((I Pi)/Gamma[\[Nu]]) (1 - Sqrt[(z - 1)/z] Sqrt[z/(z - 1)]) Log[z]^(\[Nu] - 1) + E^((Pi I \[Nu])/2) ((2 Pi)^\[Nu]/Gamma[\[Nu]]) ZetaClassical[1 - \[Nu], Log[-z]/(2 Pi I) + 1/2]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["PolyLog", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", "\[Nu]"]]]]], " ", RowBox[List["PolyLog", "[", RowBox[List["\[Nu]", ",", FractionBox["1", "z"]]], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], RowBox[List["Gamma", "[", "\[Nu]", "]"]]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List[SqrtBox[FractionBox[RowBox[List["z", "-", "1"]], "z"]], " ", SqrtBox[FractionBox["z", RowBox[List["z", "-", "1"]]]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Log", "[", "z", "]"]], RowBox[List["\[Nu]", "-", "1"]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", "\[Nu]"]], "2"]], FractionBox[RowBox[List[" ", SuperscriptBox[RowBox[List["(", RowBox[List["2", " ", "\[Pi]"]], ")"]], "\[Nu]"], " "]], RowBox[List["Gamma", "[", "\[Nu]", "]"]]], RowBox[List["ZetaClassical", "[", RowBox[List[RowBox[List["1", "-", "\[Nu]"]], ",", RowBox[List[FractionBox[RowBox[List["Log", "[", RowBox[List["-", "z"]], "]"]], RowBox[List["2", " ", "\[Pi]", " ", "\[ImaginaryI]"]]], "+", FractionBox["1", "2"]]]]], "]"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mi> &#957; </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> </msup> </mrow> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mi> &#957; </mi> </msub> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mi> z </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <msqrt> <mfrac> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mi> z </mi> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mfrac> <mi> z </mi> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mfrac> <mrow> <mtext> </mtext> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#957; </mi> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mrow> <mi> &#957; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mtext> </mtext> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mi> &#957; </mi> </msup> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#957; </mi> <mo> ) </mo> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mn> 2 </mn> </mfrac> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> , </mo> <mrow> <mfrac> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> </mfrac> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, RowBox[List[TagBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;\[Nu]&quot;]], Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[RowBox[List[&quot;log&quot;, &quot;(&quot;, RowBox[List[&quot;-&quot;, &quot;z&quot;]], &quot;)&quot;]], RowBox[List[&quot;2&quot;, &quot; &quot;, &quot;\[Pi]&quot;, &quot; &quot;, &quot;\[ImaginaryI]&quot;]]], &quot;+&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;]]], Rule[Editable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[List[$CellContext`e1, $CellContext`e2], Zeta[$CellContext`e1, $CellContext`e2]]]] </annotation> </semantics> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> PolyLog </ci> <ci> &#957; </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <pi /> <imaginaryi /> <ci> &#957; </ci> </apply> </apply> </apply> <apply> <ci> PolyLog </ci> <ci> &#957; </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <imaginaryi /> <pi /> <apply> <power /> <apply> <ci> Gamma </ci> <ci> &#957; </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <ln /> <ci> z </ci> </apply> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <ci> &#957; </ci> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <ci> &#957; </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <pi /> <imaginaryi /> <ci> &#957; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Zeta </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <ln /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> <imaginaryi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["PolyLog", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", "\[Nu]"]]]]], " ", RowBox[List["PolyLog", "[", RowBox[List["\[Nu]", ",", FractionBox["1", "z"]]], "]"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "\[Pi]"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List[SqrtBox[FractionBox[RowBox[List["z", "-", "1"]], "z"]], " ", SqrtBox[FractionBox["z", RowBox[List["z", "-", "1"]]]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Log", "[", "z", "]"]], RowBox[List["\[Nu]", "-", "1"]]]]], RowBox[List["Gamma", "[", "\[Nu]", "]"]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", "\[Nu]"]], "2"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["2", " ", "\[Pi]"]], ")"]], "\[Nu]"], " ", RowBox[List["ZetaClassical", "[", RowBox[List[RowBox[List["1", "-", "\[Nu]"]], ",", RowBox[List[FractionBox[RowBox[List["Log", "[", RowBox[List["-", "z"]], "]"]], RowBox[List["2", " ", "\[Pi]", " ", "\[ImaginaryI]"]]], "+", FractionBox["1", "2"]]]]], "]"]]]], RowBox[List["Gamma", "[", "\[Nu]", "]"]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.