Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
PolyLog






Mathematica Notation

Traditional Notation









Zeta Functions and Polylogarithms > PolyLog[nu,z] > Identities > Functional identities > Dilogarithmical cases > Involving three dilogarithms





http://functions.wolfram.com/10.08.17.0028.01









  


  










Input Form





PolyLog[2, z^2] - 2 PolyLog[2, z] + 2 PolyLog[2, z/(1 + z)] == Log[1 - z] Log[z] - Log[1/(1 + z)] Log[z/(1 + z)] - (1/2) Log[z^2] Log[1 - z^2] /; Re[z] > 0 || (Re[z] == 0 && Im[z] > 0)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List["PolyLog", "[", RowBox[List["2", ",", SuperscriptBox["z", "2"]]], "]"]], "-", RowBox[List["2", RowBox[List["PolyLog", "[", RowBox[List["2", ",", "z"]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", FractionBox["z", RowBox[List["1", "+", "z"]]]]], "]"]]]]]], "\[Equal]", " ", RowBox[List[RowBox[List[RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]], " ", RowBox[List["Log", "[", "z", "]"]]]], "-", RowBox[List[RowBox[List["Log", "[", FractionBox["1", RowBox[List["1", "+", "z"]]], "]"]], " ", RowBox[List["Log", "[", FractionBox["z", RowBox[List["1", "+", "z"]]], "]"]]]], "-", RowBox[List[FractionBox["1", "2"], RowBox[List["Log", "[", SuperscriptBox["z", "2"], "]"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", SuperscriptBox["z", "2"]]], "]"]]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Re", "[", "z", "]"]], ">", "0"]], "\[Or]", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Re", "[", "z", "]"]], "\[Equal]", "0"]], "\[And]", RowBox[List[RowBox[List["Im", "[", "z", "]"]], ">", "0"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <mfrac> <mi> z </mi> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mi> z </mi> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &gt; </mo> <mn> 0 </mn> </mrow> <mo> &#8744; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mn> 0 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &gt; </mo> <mn> 0 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <plus /> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <ln /> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ln /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ln /> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <ln /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <or /> <apply> <gt /> <apply> <real /> <ci> z </ci> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <and /> <apply> <eq /> <apply> <real /> <ci> z </ci> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <gt /> <apply> <imaginary /> <ci> z </ci> </apply> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List["PolyLog", "[", RowBox[List["2", ",", SuperscriptBox["z_", "2"]]], "]"]], "-", RowBox[List["2", " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", "z_"]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", FractionBox["z_", RowBox[List["1", "+", "z_"]]]]], "]"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]], " ", RowBox[List["Log", "[", "z", "]"]]]], "-", RowBox[List[RowBox[List["Log", "[", FractionBox["1", RowBox[List["1", "+", "z"]]], "]"]], " ", RowBox[List["Log", "[", FractionBox["z", RowBox[List["1", "+", "z"]]], "]"]]]], "-", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["Log", "[", SuperscriptBox["z", "2"], "]"]], " ", RowBox[List["Log", "[", RowBox[List["1", "-", SuperscriptBox["z", "2"]]], "]"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Re", "[", "z", "]"]], ">", "0"]], "||", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Re", "[", "z", "]"]], "\[Equal]", "0"]], "&&", RowBox[List[RowBox[List["Im", "[", "z", "]"]], ">", "0"]]]], ")"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.