Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
PolyLog






Mathematica Notation

Traditional Notation









Zeta Functions and Polylogarithms > PolyLog[nu,z] > Identities > Functional identities > Dilogarithmical cases > Involving five dilogarithms





http://functions.wolfram.com/10.08.17.0031.01









  


  










Input Form





PolyLog[2, (z/(1 - z)) (w/(1 - w))] == PolyLog[2, z/(1 - w)] + PolyLog[2, w/(1 - z)] - PolyLog[2, z] - PolyLog[2, w] + (1/2) ((-Log[1 - w]) Log[w] - Log[1 - z] Log[z] + Log[z/(1 - w)] Log[(-1 + w + z)/(-1 + w)] + Log[w/(1 - z)] Log[(-1 + w + z)/(-1 + z)] - Log[(w z)/((-1 + w) (-1 + z))] Log[-((-1 + w + z)/((-1 + w) (-1 + z)))]) /; (Abs[z] < 1 && 0 < w < 1) || (Abs[w] < 1 && 0 < z < 1) || (z < 1 && 0 < w < 1) || (w < 1 && 0 < z < 1) || (z + w > 1 && w < 0) || (z + w > 1 && z < 0)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["PolyLog", "[", RowBox[List["2", ",", RowBox[List[FractionBox["z", RowBox[List["1", "-", "z"]]], FractionBox["w", RowBox[List["1", "-", "w"]]]]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List["PolyLog", "[", RowBox[List["2", ",", FractionBox["z", RowBox[List["1", "-", "w"]]]]], "]"]], "+", RowBox[List["PolyLog", "[", RowBox[List["2", ",", FractionBox["w", RowBox[List["1", "-", "z"]]]]], "]"]], "-", " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", "z"]], "]"]], "-", " ", RowBox[List["PolyLog", "[", RowBox[List["2", ",", "w"]], "]"]], "+", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["Log", "[", RowBox[List["1", "-", "w"]], "]"]]]], " ", RowBox[List["Log", "[", "w", "]"]]]], "-", RowBox[List[RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]], " ", RowBox[List["Log", "[", "z", "]"]]]], "+", RowBox[List[RowBox[List["Log", "[", FractionBox["z", RowBox[List["1", "-", "w"]]], "]"]], " ", RowBox[List["Log", "[", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", "w", "+", "z"]], RowBox[List[RowBox[List["-", "1"]], "+", "w"]]], "]"]]]], "+", RowBox[List[RowBox[List["Log", "[", FractionBox["w", RowBox[List["1", "-", "z"]]], "]"]], " ", RowBox[List["Log", "[", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", "w", "+", "z"]], RowBox[List[RowBox[List["-", "1"]], "+", "z"]]], "]"]]]], "-", RowBox[List[RowBox[List["Log", "[", FractionBox[RowBox[List["w", " ", "z"]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "w"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]]]]], "]"]], " ", RowBox[List["Log", "[", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", "w", "+", "z"]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "w"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]]]]]]], "]"]]]]]], ")"]]]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "<", "1"]], "\[And]", RowBox[List["0", "<", "w", "<", "1"]]]], ")"]], "\[Or]", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Abs", "[", "w", "]"]], "<", "1"]], "\[And]", RowBox[List["0", "<", "z", "<", "1"]]]], ")"]], "\[Or]", RowBox[List["(", RowBox[List[RowBox[List["z", "<", "1"]], "\[And]", RowBox[List["0", "<", "w", "<", "1"]]]], ")"]], "\[Or]", RowBox[List["(", RowBox[List[RowBox[List["w", "<", "1"]], "\[And]", RowBox[List["0", "<", "z", "<", "1"]]]], ")"]], "\[Or]", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["z", "+", "w"]], ">", "1"]], "\[And]", RowBox[List["w", "<", "0"]]]], ")"]], "\[Or]", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["z", "+", "w"]], ">", "1"]], "\[And]", RowBox[List["z", "<", "0"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <mfrac> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mi> w </mi> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> w </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> + </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <mfrac> <mi> z </mi> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> w </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <mfrac> <mi> w </mi> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 2 </mn> </msub> <mo> ( </mo> <mi> w </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mi> z </mi> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> w </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> w </mi> <mo> + </mo> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <mi> w </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mi> w </mi> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> w </mi> <mo> + </mo> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> w </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> w </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> w </mi> <mo> + </mo> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> w </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> w </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> w </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> z </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &lt; </mo> <mn> 1 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mn> 0 </mn> <mo> &lt; </mo> <mi> w </mi> <mo> &lt; </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8744; </mo> <mrow> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> w </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &lt; </mo> <mn> 1 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mn> 0 </mn> <mo> &lt; </mo> <mi> z </mi> <mo> &lt; </mo> <mn> 1 </mn> </mrow> </mrow> <mo> &#8744; </mo> <mrow> <mrow> <mi> z </mi> <mo> &lt; </mo> <mn> 1 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mn> 0 </mn> <mo> &lt; </mo> <mi> w </mi> <mo> &lt; </mo> <mn> 1 </mn> </mrow> </mrow> <mo> &#8744; </mo> <mrow> <mrow> <mi> w </mi> <mo> &lt; </mo> <mn> 1 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mn> 0 </mn> <mo> &lt; </mo> <mi> z </mi> <mo> &lt; </mo> <mn> 1 </mn> </mrow> </mrow> <mo> &#8744; </mo> <mrow> <mrow> <mrow> <mi> w </mi> <mo> + </mo> <mi> z </mi> </mrow> <mo> &gt; </mo> <mn> 1 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mi> w </mi> <mo> &lt; </mo> <mn> 0 </mn> </mrow> </mrow> <mo> &#8744; </mo> <mrow> <mrow> <mrow> <mi> w </mi> <mo> + </mo> <mi> z </mi> </mrow> <mo> &gt; </mo> <mn> 1 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mi> z </mi> <mo> &lt; </mo> <mn> 0 </mn> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <times /> <ci> z </ci> <ci> w </ci> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> w </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <plus /> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> w </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <apply> <times /> <ci> w </ci> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyLog </ci> <cn type='integer'> 2 </cn> <ci> w </ci> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <ln /> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> w </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ln /> <apply> <times /> <apply> <plus /> <ci> w </ci> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> w </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <ln /> <apply> <times /> <ci> w </ci> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ln /> <apply> <times /> <apply> <plus /> <ci> w </ci> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ln /> <apply> <times /> <ci> w </ci> <ci> z </ci> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> w </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ln /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> w </ci> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> w </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <ln /> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> w </ci> </apply> </apply> </apply> <apply> <ln /> <ci> w </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <or /> <apply> <and /> <apply> <lt /> <apply> <abs /> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <lt /> <cn type='integer'> 0 </cn> <ci> w </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <and /> <apply> <lt /> <apply> <abs /> <ci> w </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <lt /> <cn type='integer'> 0 </cn> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <and /> <apply> <lt /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <lt /> <cn type='integer'> 0 </cn> <ci> w </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <and /> <apply> <lt /> <ci> w </ci> <cn type='integer'> 1 </cn> </apply> <apply> <lt /> <cn type='integer'> 0 </cn> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <and /> <apply> <gt /> <apply> <plus /> <ci> w </ci> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <lt /> <ci> w </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <and /> <apply> <gt /> <apply> <plus /> <ci> w </ci> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <lt /> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["PolyLog", "[", RowBox[List["2", ",", FractionBox[RowBox[List["z_", " ", "w_"]], RowBox[List[RowBox[List["(", RowBox[List["1", "-", "z_"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", "w_"]], ")"]]]]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["PolyLog", "[", RowBox[List["2", ",", FractionBox["z", RowBox[List["1", "-", "w"]]]]], "]"]], "+", RowBox[List["PolyLog", "[", RowBox[List["2", ",", FractionBox["w", RowBox[List["1", "-", "z"]]]]], "]"]], "-", RowBox[List["PolyLog", "[", RowBox[List["2", ",", "z"]], "]"]], "-", RowBox[List["PolyLog", "[", RowBox[List["2", ",", "w"]], "]"]], "+", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["Log", "[", RowBox[List["1", "-", "w"]], "]"]]]], " ", RowBox[List["Log", "[", "w", "]"]]]], "-", RowBox[List[RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]], " ", RowBox[List["Log", "[", "z", "]"]]]], "+", RowBox[List[RowBox[List["Log", "[", FractionBox["z", RowBox[List["1", "-", "w"]]], "]"]], " ", RowBox[List["Log", "[", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", "w", "+", "z"]], RowBox[List[RowBox[List["-", "1"]], "+", "w"]]], "]"]]]], "+", RowBox[List[RowBox[List["Log", "[", FractionBox["w", RowBox[List["1", "-", "z"]]], "]"]], " ", RowBox[List["Log", "[", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", "w", "+", "z"]], RowBox[List[RowBox[List["-", "1"]], "+", "z"]]], "]"]]]], "-", RowBox[List[RowBox[List["Log", "[", FractionBox[RowBox[List["w", " ", "z"]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "w"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]]]]], "]"]], " ", RowBox[List["Log", "[", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["-", "1"]], "+", "w", "+", "z"]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "w"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]]]]]]], "]"]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "<", "1"]], "&&", RowBox[List["0", "<", "w", "<", "1"]]]], ")"]], "||", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Abs", "[", "w", "]"]], "<", "1"]], "&&", RowBox[List["0", "<", "z", "<", "1"]]]], ")"]], "||", RowBox[List["(", RowBox[List[RowBox[List["z", "<", "1"]], "&&", RowBox[List["0", "<", "w", "<", "1"]]]], ")"]], "||", RowBox[List["(", RowBox[List[RowBox[List["w", "<", "1"]], "&&", RowBox[List["0", "<", "z", "<", "1"]]]], ")"]], "||", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["z", "+", "w"]], ">", "1"]], "&&", RowBox[List["w", "<", "0"]]]], ")"]], "||", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["z", "+", "w"]], ">", "1"]], "&&", RowBox[List["z", "<", "0"]]]], ")"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998-2014 Wolfram Research, Inc.