Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
PolyLog






Mathematica Notation

Traditional Notation









Zeta Functions and Polylogarithms > PolyLog[nu,z] > Identities > Functional identities > Trilogarithmical cases > Involving six trilogarithms





http://functions.wolfram.com/10.08.17.0052.01









  


  










Input Form





PolyLog[3, (z/(1 - z))^3] + PolyLog[3, z (1 - z)] - 3 PolyLog[3, z/(1 - z)] - (3/2) PolyLog[3, (z/(1 - z))^2] - 2 PolyLog[3, z^2/(z - 1)] - 2 PolyLog[3, -(z/(1 - z)^2)] == -Log[1 - z]^3 /; Abs[z] < 1 || Re[z] <= 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List["PolyLog", "[", RowBox[List["3", ",", SuperscriptBox[RowBox[List["(", FractionBox["z", RowBox[List["1", "-", "z"]]], ")"]], "3"]]], "]"]], "+", RowBox[List["PolyLog", "[", RowBox[List["3", ",", RowBox[List["z", RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]]]]]], "]"]], "-", RowBox[List["3", RowBox[List["PolyLog", "[", RowBox[List["3", ",", FractionBox["z", RowBox[List["1", "-", "z"]]]]], "]"]]]], "-", RowBox[List[FractionBox["3", "2"], RowBox[List["PolyLog", "[", RowBox[List["3", ",", SuperscriptBox[RowBox[List["(", FractionBox["z", RowBox[List["1", "-", "z"]]], ")"]], "2"]]], "]"]]]], "-", RowBox[List["2", RowBox[List["PolyLog", "[", RowBox[List["3", ",", FractionBox[SuperscriptBox["z", "2"], RowBox[List["z", "-", "1"]]]]], "]"]]]], "-", RowBox[List["2", RowBox[List["PolyLog", "[", RowBox[List["3", ",", RowBox[List["-", FractionBox["z", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], "2"]]]]]], "]"]]]]]], "\[Equal]", RowBox[List["-", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]], "3"]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "<", "1"]], "\[Or]", RowBox[List[RowBox[List["Re", "[", "z", "]"]], "\[LessEqual]", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 3 </mn> </msub> <mo> ( </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mi> z </mi> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 3 </mn> </msub> <mo> ( </mo> <mfrac> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 3 </mn> </msub> <mo> ( </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mi> z </mi> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 3 </mn> </msub> <mo> ( </mo> <mfrac> <mi> z </mi> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 3 </mn> </msub> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 3 </mn> </msub> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mi> z </mi> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mo> - </mo> <mrow> <msup> <mi> log </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> z </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &lt; </mo> <mn> 1 </mn> </mrow> <mo> &#8744; </mo> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8804; </mo> <mn> 0 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <plus /> <apply> <ci> PolyLog </ci> <cn type='integer'> 3 </cn> <apply> <power /> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> PolyLog </ci> <cn type='integer'> 3 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <ci> PolyLog </ci> <cn type='integer'> 3 </cn> <apply> <power /> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> PolyLog </ci> <cn type='integer'> 3 </cn> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <ci> PolyLog </ci> <cn type='integer'> 3 </cn> <apply> <times /> <ci> z </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> PolyLog </ci> <cn type='integer'> 3 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <or /> <apply> <lt /> <apply> <abs /> <ci> z </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <leq /> <apply> <real /> <ci> z </ci> </apply> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List["PolyLog", "[", RowBox[List["3", ",", SuperscriptBox[RowBox[List["(", FractionBox["z_", RowBox[List["1", "-", "z_"]]], ")"]], "3"]]], "]"]], "+", RowBox[List["PolyLog", "[", RowBox[List["3", ",", RowBox[List["z_", " ", RowBox[List["(", RowBox[List["1", "-", "z_"]], ")"]]]]]], "]"]], "-", RowBox[List["3", " ", RowBox[List["PolyLog", "[", RowBox[List["3", ",", FractionBox["z_", RowBox[List["1", "-", "z_"]]]]], "]"]]]], "-", RowBox[List[FractionBox["3", "2"], " ", RowBox[List["PolyLog", "[", RowBox[List["3", ",", SuperscriptBox[RowBox[List["(", FractionBox["z_", RowBox[List["1", "-", "z_"]]], ")"]], "2"]]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["PolyLog", "[", RowBox[List["3", ",", FractionBox[SuperscriptBox["z_", "2"], RowBox[List["z_", "-", "1"]]]]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["PolyLog", "[", RowBox[List["3", ",", RowBox[List["-", FractionBox["z_", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z_"]], ")"]], "2"]]]]]], "]"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]], "3"]]], "/;", RowBox[List[RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "<", "1"]], "||", RowBox[List[RowBox[List["Re", "[", "z", "]"]], "\[LessEqual]", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.