Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
PolyLog






Mathematica Notation

Traditional Notation









Zeta Functions and Polylogarithms > PolyLog[nu,z] > Identities > Functional identities > Trilogarithmical cases > Involving seven trilogarithms





http://functions.wolfram.com/10.08.17.0054.01









  


  










Input Form





PolyLog[3, -((1 - z)/(1 + z))^2] - (1/2) PolyLog[3, ((1 - z)/(1 + z))^2] + PolyLog[3, -z^2] - (1/2) PolyLog[3, z^2] - 2 PolyLog[3, z ((1 - z)/(1 + z))] - 2 PolyLog[3, -((1 - z)/(z (1 + z)))] + (5/4) PolyLog[3, 1] == Log[(1 - z)/(1 + z)] Log[z]^2 - (Pi^2/3) Log[z] - (1/3) Log[z]^3 /; Re[z] > 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List["PolyLog", "[", RowBox[List["3", ",", RowBox[List["-", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["1", "-", "z"]], RowBox[List["1", "+", "z"]]], ")"]], "2"]]]]], "]"]], "-", RowBox[List[FractionBox["1", "2"], RowBox[List["PolyLog", "[", RowBox[List["3", ",", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["1", "-", "z"]], RowBox[List["1", "+", "z"]]], ")"]], "2"]]], "]"]]]], "+", RowBox[List["PolyLog", "[", RowBox[List["3", ",", RowBox[List["-", SuperscriptBox["z", "2"]]]]], "]"]], "-", RowBox[List[FractionBox["1", "2"], RowBox[List["PolyLog", "[", RowBox[List["3", ",", SuperscriptBox["z", "2"]]], "]"]]]], "-", RowBox[List["2", RowBox[List["PolyLog", "[", RowBox[List["3", ",", RowBox[List["z", FractionBox[RowBox[List["1", "-", "z"]], RowBox[List["1", "+", "z"]]]]]]], "]"]]]], "-", RowBox[List["2", RowBox[List["PolyLog", "[", RowBox[List["3", ",", RowBox[List["-", FractionBox[RowBox[List["1", "-", "z"]], RowBox[List["z", RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]]]]]]]]], "]"]]]], "+", RowBox[List[FractionBox["5", "4"], RowBox[List["PolyLog", "[", RowBox[List["3", ",", "1"]], "]"]]]]]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["Log", "[", FractionBox[RowBox[List["1", "-", "z"]], RowBox[List["1", "+", "z"]]], "]"]], SuperscriptBox[RowBox[List["Log", "[", "z", "]"]], "2"]]], "-", RowBox[List[FractionBox[SuperscriptBox["\[Pi]", "2"], "3"], RowBox[List["Log", "[", "z", "]"]]]], "-", RowBox[List[FractionBox["1", "3"], SuperscriptBox[RowBox[List["Log", "[", "z", "]"]], "3"]]]]]]], "/;", RowBox[List[RowBox[List["Re", "[", "z", "]"]], ">", "0"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 3 </mn> </msub> <mo> ( </mo> <mrow> <mo> - </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> z </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 3 </mn> </msub> <mo> ( </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> z </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 3 </mn> </msub> <mo> ( </mo> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 3 </mn> </msub> <mo> ( </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 3 </mn> </msub> <mo> ( </mo> <mfrac> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> z </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 3 </mn> </msub> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 5 </mn> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mn> 3 </mn> </msub> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 3 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> z </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &gt; </mo> <mn> 0 </mn> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <plus /> <apply> <ci> PolyLog </ci> <cn type='integer'> 3 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <ci> PolyLog </ci> <cn type='integer'> 3 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <ci> PolyLog </ci> <cn type='integer'> 3 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <ci> PolyLog </ci> <cn type='integer'> 3 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> PolyLog </ci> <cn type='integer'> 3 </cn> <apply> <times /> <ci> z </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> PolyLog </ci> <cn type='integer'> 3 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <ci> z </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 5 <sep /> 4 </cn> <apply> <ci> PolyLog </ci> <cn type='integer'> 3 </cn> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <power /> <apply> <ln /> <ci> z </ci> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <apply> <ln /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <ln /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 3 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <ln /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <gt /> <apply> <real /> <ci> z </ci> </apply> <cn type='integer'> 0 </cn> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List["PolyLog", "[", RowBox[List["3", ",", RowBox[List["-", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["1", "-", "z_"]], RowBox[List["1", "+", "z_"]]], ")"]], "2"]]]]], "]"]], "-", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["PolyLog", "[", RowBox[List["3", ",", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["1", "-", "z_"]], RowBox[List["1", "+", "z_"]]], ")"]], "2"]]], "]"]]]], "+", RowBox[List["PolyLog", "[", RowBox[List["3", ",", RowBox[List["-", SuperscriptBox["z_", "2"]]]]], "]"]], "-", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["PolyLog", "[", RowBox[List["3", ",", SuperscriptBox["z_", "2"]]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["PolyLog", "[", RowBox[List["3", ",", FractionBox[RowBox[List["z_", " ", RowBox[List["(", RowBox[List["1", "-", "z_"]], ")"]]]], RowBox[List["1", "+", "z_"]]]]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["PolyLog", "[", RowBox[List["3", ",", RowBox[List["-", FractionBox[RowBox[List["1", "-", "z_"]], RowBox[List["z_", " ", RowBox[List["(", RowBox[List["1", "+", "z_"]], ")"]]]]]]]]], "]"]]]], "+", RowBox[List[FractionBox["5", "4"], " ", RowBox[List["PolyLog", "[", RowBox[List["3", ",", "1"]], "]"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[RowBox[List["Log", "[", FractionBox[RowBox[List["1", "-", "z"]], RowBox[List["1", "+", "z"]]], "]"]], " ", SuperscriptBox[RowBox[List["Log", "[", "z", "]"]], "2"]]], "-", RowBox[List[FractionBox["1", "3"], " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["Log", "[", "z", "]"]]]], "-", FractionBox[SuperscriptBox[RowBox[List["Log", "[", "z", "]"]], "3"], "3"]]], "/;", RowBox[List[RowBox[List["Re", "[", "z", "]"]], ">", "0"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.