Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











RamanujanTauTheta






Mathematica Notation

Traditional Notation









Zeta Functions and Polylogarithms > RamanujanTauTheta[z] > Series representations > Asymptotic series expansions





http://functions.wolfram.com/10.12.06.0034.01









  


  










Input Form





RamanujanTauTheta[z] \[Proportional] z Log[z] + (-1 - Log[2 Pi] + Pi I Floor[(Pi - 2 Arg[z])/(4 Pi)] + Pi I Floor[3/4 - Arg[z]/(2 Pi)]) z + (11 Pi)/4 + ((11 Pi)/2) Floor[(Pi - 2 Arg[z])/(4 Pi)] - ((11 Pi)/2) Floor[3/4 - Arg[z]/(2 Pi)] - (59/(4 z)) (1 + O[1/z^2]) /; (Abs[z] -> Infinity)










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["RamanujanTauTheta", "[", "z", "]"]], "\[Proportional]", RowBox[List[RowBox[List["z", " ", RowBox[List["Log", "[", "z", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["Log", "[", RowBox[List["2", "\[Pi]"]], "]"]], "+", RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["\[Pi]", "-", RowBox[List["2", " ", RowBox[List["Arg", "[", "z", "]"]]]]]], RowBox[List["4", " ", "\[Pi]"]]], "]"]]]], "+", RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", RowBox[List["Floor", "[", RowBox[List[FractionBox["3", "4"], "-", FractionBox[RowBox[List["Arg", "[", "z", "]"]], RowBox[List["2", " ", "\[Pi]"]]]]], "]"]]]]]], ")"]], "z"]], "+", FractionBox[RowBox[List["11", " ", "\[Pi]"]], "4"], "+", RowBox[List[FractionBox[RowBox[List["11", " ", "\[Pi]"]], "2"], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["\[Pi]", "-", RowBox[List["2", " ", RowBox[List["Arg", "[", "z", "]"]]]]]], RowBox[List["4", " ", "\[Pi]"]]], "]"]]]], "-", RowBox[List[FractionBox[RowBox[List["11", " ", "\[Pi]"]], "2"], " ", RowBox[List["Floor", "[", RowBox[List[FractionBox["3", "4"], "-", FractionBox[RowBox[List["Arg", "[", "z", "]"]], RowBox[List["2", " ", "\[Pi]"]]]]], "]"]]]], "-", RowBox[List[FractionBox["59", RowBox[List["4", "z"]]], RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", SuperscriptBox["z", "2"]], "]"]]]], ")"]]]]]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mi> &#964;&#952; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> &#960; </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> </mrow> <mo> &#8971; </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mfrac> <mrow> <mn> 11 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mn> 4 </mn> </mfrac> <mo> + </mo> <mrow> <mfrac> <mrow> <mn> 11 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> &#960; </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8971; </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mn> 11 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> &#8970; </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> </mrow> <mo> &#8971; </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mn> 59 </mn> <mtext> </mtext> </mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> z </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mi> &#8734; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> &#964;&#952; </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <ln /> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <imaginaryi /> <pi /> <apply> <floor /> <apply> <times /> <apply> <plus /> <pi /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <arg /> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <imaginaryi /> <pi /> <apply> <floor /> <apply> <plus /> <cn type='rational'> 3 <sep /> 4 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <arg /> <ci> z </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> 11 </cn> <pi /> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 11 </cn> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <floor /> <apply> <times /> <apply> <plus /> <pi /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <arg /> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 11 </cn> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <floor /> <apply> <plus /> <cn type='rational'> 3 <sep /> 4 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <arg /> <ci> z </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 59 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <ci> O </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ci> Rule </ci> <apply> <abs /> <ci> z </ci> </apply> <infinity /> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["RamanujanTauTheta", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["z", " ", RowBox[List["Log", "[", "z", "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]], "+", RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["\[Pi]", "-", RowBox[List["2", " ", RowBox[List["Arg", "[", "z", "]"]]]]]], RowBox[List["4", " ", "\[Pi]"]]], "]"]]]], "+", RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", RowBox[List["Floor", "[", RowBox[List[FractionBox["3", "4"], "-", FractionBox[RowBox[List["Arg", "[", "z", "]"]], RowBox[List["2", " ", "\[Pi]"]]]]], "]"]]]]]], ")"]], " ", "z"]], "+", FractionBox[RowBox[List["11", " ", "\[Pi]"]], "4"], "+", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["11", " ", "\[Pi]"]], ")"]], " ", RowBox[List["Floor", "[", FractionBox[RowBox[List["\[Pi]", "-", RowBox[List["2", " ", RowBox[List["Arg", "[", "z", "]"]]]]]], RowBox[List["4", " ", "\[Pi]"]]], "]"]]]], "-", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["11", " ", "\[Pi]"]], ")"]], " ", RowBox[List["Floor", "[", RowBox[List[FractionBox["3", "4"], "-", FractionBox[RowBox[List["Arg", "[", "z", "]"]], RowBox[List["2", " ", "\[Pi]"]]]]], "]"]]]], "-", FractionBox[RowBox[List["59", " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["SeriesData", "[", RowBox[List["z", ",", "\[Infinity]", ",", RowBox[List["{", "0", "}"]], ",", "0", ",", "2"]], "]"]]]], ")"]]]], RowBox[List["4", " ", "z"]]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.