Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











RiemannSiegelTheta






Mathematica Notation

Traditional Notation









Zeta Functions and Polylogarithms > RiemannSiegelTheta[z] > Integral representations > On the real axis > Of the direct function





http://functions.wolfram.com/10.03.07.0002.01









  


  










Input Form





RiemannSiegelTheta[z] == (1/2) (Integrate[(2 Sin[(t z)/2] E^(t/4))/(t (1 - E^t)) + z/(E^t t), {t, 0, Infinity}] + I Log[Sin[Pi (1/4 + (I z)/2)]] - I Log[Sin[Pi (1/4 - (I z)/2)]]) - (Log[Pi]/2) z /; Abs[Im[z]] < 3/2










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["RiemannSiegelTheta", "[", "z", "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Infinity]"], RowBox[List[RowBox[List["(", RowBox[List[FractionBox[RowBox[List["2", " ", RowBox[List["Sin", "[", FractionBox[RowBox[List["t", " ", "z"]], "2"], "]"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["t", "/", "4"]]]]], RowBox[List["t", " ", RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["\[ExponentialE]", "t"]]], ")"]]]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "t"]]], " ", "z"]], "t"]]], ")"]], RowBox[List["\[DifferentialD]", "t"]]]]]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Log", "[", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[FractionBox["1", "4"], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], "2"]]], ")"]]]], "]"]], "]"]]]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Log", "[", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[FractionBox["1", "4"], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], "2"]]], ")"]]]], "]"]], "]"]]]]]], ")"]]]], "-", RowBox[List[FractionBox[RowBox[List["Log", "[", "\[Pi]", "]"]], "2"], "z"]]]]]], "/;", RowBox[List[RowBox[List["Abs", "[", RowBox[List["Im", "[", "z", "]"]], "]"]], "<", FractionBox["3", "2"]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <semantics> <mi> &#977; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[CurlyTheta]&quot;, RiemannSiegelTheta] </annotation> </semantics> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msubsup> <mo> &#8747; </mo> <mn> 0 </mn> <mi> &#8734; </mi> </msubsup> <mrow> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mi> t </mi> </mrow> </msup> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mi> t </mi> </mfrac> <mo> + </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> t </mi> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> <mtext> </mtext> </mrow> <mrow> <mi> t </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> &#8519; </mi> <mi> t </mi> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> t </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> t </mi> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#960; </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &lt; </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> RiemannSiegelTheta </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <int /> <bvar> <ci> t </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> t </ci> </apply> </apply> <ci> z </ci> <apply> <power /> <ci> t </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <ci> t </ci> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <ci> t </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <exponentiale /> <ci> t </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sin /> <apply> <times /> <ci> t </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <imaginaryi /> <apply> <ln /> <apply> <sin /> <apply> <times /> <pi /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <ln /> <apply> <sin /> <apply> <times /> <pi /> <apply> <plus /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <ln /> <pi /> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <lt /> <apply> <abs /> <apply> <imaginary /> <ci> z </ci> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["RiemannSiegelTheta", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Infinity]"], RowBox[List[RowBox[List["(", RowBox[List[FractionBox[RowBox[List["2", " ", RowBox[List["Sin", "[", FractionBox[RowBox[List["t", " ", "z"]], "2"], "]"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["t", "/", "4"]]]]], RowBox[List["t", " ", RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["\[ExponentialE]", "t"]]], ")"]]]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "t"]]], " ", "z"]], "t"]]], ")"]], RowBox[List["\[DifferentialD]", "t"]]]]]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Log", "[", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[FractionBox["1", "4"], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], "2"]]], ")"]]]], "]"]], "]"]]]], "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Log", "[", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[FractionBox["1", "4"], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], "2"]]], ")"]]]], "]"]], "]"]]]]]], ")"]]]], "-", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["Log", "[", "\[Pi]", "]"]], " ", "z"]]]], "/;", RowBox[List[RowBox[List["Abs", "[", RowBox[List["Im", "[", "z", "]"]], "]"]], "<", FractionBox["3", "2"]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.