Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











RiemannSiegelTheta






Mathematica Notation

Traditional Notation









Zeta Functions and Polylogarithms > RiemannSiegelTheta[z] > Differentiation > Symbolic differentiation





http://functions.wolfram.com/10.03.20.0003.02









  


  










Input Form





D[RiemannSiegelTheta[z], {z, n}] == (-(Log[Pi]/2)) (KroneckerDelta[n] z + KroneckerDelta[n - 1]) - (I^(n + 1)/2^(n + 1)) (PolyGamma[n - 1, 1/4 + (I z)/2] - (-1)^n PolyGamma[n - 1, 1/4 - (I z)/2]) /; Element[n, Integers] && n >= 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["z", ",", "n"]], "}"]]], RowBox[List["RiemannSiegelTheta", "[", "z", "]"]]]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox[RowBox[List["Log", "[", "\[Pi]", "]"]], "2"]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["KroneckerDelta", "[", "n", "]"]], " ", "z"]], "+", RowBox[List["KroneckerDelta", "[", RowBox[List["n", "-", "1"]], "]"]]]], ")"]]]], "-", RowBox[List[FractionBox[SuperscriptBox["\[ImaginaryI]", RowBox[List["n", "+", "1"]]], SuperscriptBox["2", RowBox[List["n", "+", "1"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["n", "-", "1"]], ",", RowBox[List[FractionBox["1", "4"], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], "2"]]]]], "]"]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["n", "-", "1"]], ",", RowBox[List[FractionBox["1", "4"], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], "2"]]]]], "]"]]]]]], ")"]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mi> n </mi> </msup> <mrow> <semantics> <mi> &#977; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[CurlyTheta]&quot;, RiemannSiegelTheta] </annotation> </semantics> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> z </mi> <mi> n </mi> </msup> </mrow> </mfrac> <mo> &#10869; </mo> <mrow> <mrow> <mfrac> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#960; </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msub> <semantics> <mi> &#948; </mi> <annotation-xml encoding='MathML-Content'> <ci> KroneckerDelta </ci> </annotation-xml> </semantics> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <mo> + </mo> <mrow> <mi> z </mi> <mo> &#8290; </mo> <msub> <semantics> <mi> &#948; </mi> <annotation-xml encoding='MathML-Content'> <ci> KroneckerDelta </ci> </annotation-xml> </semantics> <mi> n </mi> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <msup> <mi> &#8520; </mi> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <msup> <mn> 2 </mn> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> &#8290; </mo> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <ci> n </ci> </degree> </bvar> <apply> <ci> RiemannSiegelTheta </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <ln /> <pi /> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> KroneckerDelta </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> z </ci> <apply> <ci> KroneckerDelta </ci> <ci> n </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <imaginaryi /> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <ci> &#8469; </ci> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["z_", ",", "n_"]], "}"]]]]], RowBox[List["RiemannSiegelTheta", "[", "z_", "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["-", RowBox[List["Log", "[", "\[Pi]", "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["KroneckerDelta", "[", "n", "]"]], " ", "z"]], "+", RowBox[List["KroneckerDelta", "[", RowBox[List["n", "-", "1"]], "]"]]]], ")"]]]], "-", FractionBox[RowBox[List[SuperscriptBox["\[ImaginaryI]", RowBox[List["n", "+", "1"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["n", "-", "1"]], ",", RowBox[List[FractionBox["1", "4"], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], "2"]]]]], "]"]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["n", "-", "1"]], ",", RowBox[List[FractionBox["1", "4"], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "z"]], "2"]]]]], "]"]]]]]], ")"]]]], SuperscriptBox["2", RowBox[List["n", "+", "1"]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.