Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Zeta






Mathematica Notation

Traditional Notation









Zeta Functions and Polylogarithms > Zeta[s,a] > Series representations > Other series representations > Other series representations > For zeta^(s,a)





http://functions.wolfram.com/10.02.06.0020.01









  


  










Input Form





ZetaClassical[s, a] == Sum[(k + a)^(-s), {k, 0, n}] + (a + n)^(1 - s)/(s - 1) + Sum[(Pochhammer[s + k - 1, k] BernoulliB[k + 1])/ ((k + 1)! (a + n)^(s + k)), {k, 0, r - 1}] - (Pochhammer[s, r + 1]/(r + 1)!) Integrate[ (BernoulliB[r + 1, t - Floor[t]] - BernoulliB[r + 1])/ (t + a + n)^(s + r + 1), {t, 0, Infinity}] /; Element[n, Integers] && n >= 0 && Element[r, Integers] && r >= 0 && Re[a] > -n && !(Element[-a, Integers] && -a > 0) && Re[s] > -r && s != 1










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["ZetaClassical", "[", RowBox[List["s", ",", "a"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], SuperscriptBox[RowBox[List["(", RowBox[List["k", "+", "a"]], ")"]], RowBox[List["-", "s"]]]]], "+", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "n"]], ")"]], RowBox[List["1", "-", "s"]]], RowBox[List["s", "-", "1"]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["r", "-", "1"]]], FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["s", "+", "k", "-", "1"]], ",", "k"]], "]"]], " ", RowBox[List["BernoulliB", "[", RowBox[List["k", "+", "1"]], "]"]]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], "!"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "n"]], ")"]], RowBox[List["s", "+", "k"]]]]]]]], "-", RowBox[List[FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List["s", ",", RowBox[List["r", "+", "1"]]]], "]"]], " "]], RowBox[List[RowBox[List["(", RowBox[List["r", "+", "1"]], ")"]], "!"]]], RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[RowBox[List["BernoulliB", "[", RowBox[List[RowBox[List["r", "+", "1"]], ",", RowBox[List["t", "-", RowBox[List["Floor", "[", "t", "]"]]]]]], "]"]], "-", RowBox[List["BernoulliB", "[", RowBox[List["r", "+", "1"]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["t", "+", "a", "+", "n"]], ")"]], RowBox[List["s", "+", "r", "+", "1"]]]], RowBox[List["\[DifferentialD]", "t"]]]]]]]]]]]], "/;", "\[IndentingNewLine]", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List["r", "\[Element]", "Integers"]], "\[And]", RowBox[List["r", "\[GreaterEqual]", "0"]], "\[And]", RowBox[List[RowBox[List["Re", "[", "a", "]"]], ">", RowBox[List["-", "n"]]]], "\[And]", RowBox[List["Not", "[", RowBox[List[RowBox[List[RowBox[List["-", "a"]], "\[Element]", "Integers"]], "\[And]", RowBox[List[RowBox[List["-", "a"]], ">", "0"]]]], "]"]], "\[And]", RowBox[List[RowBox[List["Re", "[", "s", "]"]], ">", RowBox[List["-", "r"]]]], "\[And]", RowBox[List["s", "\[NotEqual]", "1"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mover> <mi> &#950; </mi> <mo> ^ </mo> </mover> <mo> ( </mo> <mrow> <mi> s </mi> <mo> , </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[OverscriptBox[&quot;\[Zeta]&quot;, &quot;^&quot;], &quot;(&quot;, RowBox[List[TagBox[&quot;s&quot;, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;a&quot;, Rule[Editable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[List[$CellContext`e1, $CellContext`e2], Zeta[$CellContext`e1, $CellContext`e2]]]] </annotation> </semantics> <mo> &#10869; </mo> <mrow> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> s </mi> </mrow> </msup> </mrow> <mo> + </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> s </mi> </mrow> </msup> <mrow> <mi> s </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> + </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> r </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mi> s </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;k&quot;, &quot;+&quot;, &quot;s&quot;, &quot;-&quot;, &quot;1&quot;]], &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> <mo> &#8290; </mo> <msub> <semantics> <mi> B </mi> <annotation encoding='Mathematica'> TagBox[&quot;B&quot;, BernoulliB] </annotation> </semantics> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> + </mo> <mi> s </mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mi> s </mi> <mo> ) </mo> </mrow> <mrow> <mi> r </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, &quot;s&quot;, &quot;)&quot;]], RowBox[List[&quot;r&quot;, &quot;+&quot;, &quot;1&quot;]]], Pochhammer] </annotation> </semantics> <mtext> </mtext> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> r </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msubsup> <mo> &#8747; </mo> <mn> 0 </mn> <mi> &#8734; </mi> </msubsup> <mrow> <mfrac> <mrow> <mrow> <msub> <semantics> <mi> B </mi> <annotation encoding='Mathematica'> TagBox[&quot;B&quot;, BernoulliB] </annotation> </semantics> <mrow> <mi> r </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <mrow> <mi> t </mi> <mo> - </mo> <mrow> <mo> &#8970; </mo> <mi> t </mi> <mo> &#8971; </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <msub> <semantics> <mi> B </mi> <annotation encoding='Mathematica'> TagBox[&quot;B&quot;, BernoulliB] </annotation> </semantics> <mrow> <mi> r </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> n </mi> <mo> + </mo> <mi> t </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> r </mi> <mo> + </mo> <mi> s </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> t </mi> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> n </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mi> r </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> &gt; </mo> <mrow> <mo> - </mo> <mi> n </mi> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> &#8713; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> s </mi> <mo> ) </mo> </mrow> <mo> &gt; </mo> <mrow> <mo> - </mo> <mi> r </mi> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mi> s </mi> <mo> &#8800; </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> Zeta </ci> <ci> s </ci> <ci> a </ci> </apply> <apply> <plus /> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> n </ci> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> s </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> r </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> k </ci> <ci> s </ci> <cn type='integer'> -1 </cn> </apply> <ci> k </ci> </apply> <apply> <ci> BernoulliB </ci> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> n </ci> </apply> <apply> <plus /> <ci> k </ci> <ci> s </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <ci> Pochhammer </ci> <ci> s </ci> <apply> <plus /> <ci> r </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <factorial /> <apply> <plus /> <ci> r </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <int /> <bvar> <ci> t </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <plus /> <apply> <ci> BernoulliB </ci> <apply> <plus /> <ci> r </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> t </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <floor /> <ci> t </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> BernoulliB </ci> <apply> <plus /> <ci> r </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> n </ci> <ci> t </ci> </apply> <apply> <plus /> <ci> r </ci> <ci> s </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> n </ci> <ci> &#8469; </ci> </apply> <apply> <in /> <ci> r </ci> <ci> &#8469; </ci> </apply> <apply> <gt /> <apply> <real /> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> <apply> <notin /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> <apply> <gt /> <apply> <real /> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> r </ci> </apply> </apply> <apply> <neq /> <ci> s </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ZetaClassical", "[", RowBox[List["s_", ",", "a_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], SuperscriptBox[RowBox[List["(", RowBox[List["k", "+", "a"]], ")"]], RowBox[List["-", "s"]]]]], "+", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "n"]], ")"]], RowBox[List["1", "-", "s"]]], RowBox[List["s", "-", "1"]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["r", "-", "1"]]], FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["s", "+", "k", "-", "1"]], ",", "k"]], "]"]], " ", RowBox[List["BernoulliB", "[", RowBox[List["k", "+", "1"]], "]"]]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], "!"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "n"]], ")"]], RowBox[List["s", "+", "k"]]]]]]]], "-", FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List["s", ",", RowBox[List["r", "+", "1"]]]], "]"]], " ", RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[RowBox[List["BernoulliB", "[", RowBox[List[RowBox[List["r", "+", "1"]], ",", RowBox[List["t", "-", RowBox[List["Floor", "[", "t", "]"]]]]]], "]"]], "-", RowBox[List["BernoulliB", "[", RowBox[List["r", "+", "1"]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["t", "+", "a", "+", "n"]], ")"]], RowBox[List["s", "+", "r", "+", "1"]]]], RowBox[List["\[DifferentialD]", "t"]]]]]]]], RowBox[List[RowBox[List["(", RowBox[List["r", "+", "1"]], ")"]], "!"]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]], "&&", RowBox[List["r", "\[Element]", "Integers"]], "&&", RowBox[List["r", "\[GreaterEqual]", "0"]], "&&", RowBox[List[RowBox[List["Re", "[", "a", "]"]], ">", RowBox[List["-", "n"]]]], "&&", RowBox[List["!", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "a"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["-", "a"]], ">", "0"]]]], ")"]]]], "&&", RowBox[List[RowBox[List["Re", "[", "s", "]"]], ">", RowBox[List["-", "r"]]]], "&&", RowBox[List["s", "\[NotEqual]", "1"]]]]]]]]]]










Contributed by





Allan Cortzen










Date Added to functions.wolfram.com (modification date)





2002-12-18





© 1998-2014 Wolfram Research, Inc.