Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Zeta






Mathematica Notation

Traditional Notation









Zeta Functions and Polylogarithms > Zeta[s,a] > Transformations > Multiple arguments > Argument involving numeric multiples of variable > For zeta^(s,a)





http://functions.wolfram.com/10.02.16.0013.01









  


  










Input Form





Derivative[1, 0][ZetaClassical][s, 3 a] == (Derivative[1, 0][ZetaClassical][s, a] + Derivative[1, 0][ZetaClassical][s, a + 1/3] + Derivative[1, 0][ZetaClassical][s, a + 2/3])/3^s - (Log[3] (ZetaClassical[s, a] + ZetaClassical[s, a + 1/3] + ZetaClassical[s, a + 2/3]))/3^s










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List["Derivative", "[", RowBox[List["1", ",", "0"]], "]"]], "[", "ZetaClassical", "]"]], "[", RowBox[List["s", ",", RowBox[List["3", "a"]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List[SuperscriptBox["3", RowBox[List["-", "s"]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List[RowBox[List["Derivative", "[", RowBox[List["1", ",", "0"]], "]"]], "[", "ZetaClassical", "]"]], "[", RowBox[List["s", ",", "a"]], "]"]], "+", RowBox[List[RowBox[List[RowBox[List["Derivative", "[", RowBox[List["1", ",", "0"]], "]"]], "[", "ZetaClassical", "]"]], "[", RowBox[List["s", ",", RowBox[List["a", "+", FractionBox["1", "3"]]]]], "]"]], "+", RowBox[List[RowBox[List[RowBox[List["Derivative", "[", RowBox[List["1", ",", "0"]], "]"]], "[", "ZetaClassical", "]"]], "[", RowBox[List["s", ",", RowBox[List["a", "+", FractionBox["2", "3"]]]]], "]"]]]], ")"]]]], "-", RowBox[List[RowBox[List["Log", "[", "3", "]"]], SuperscriptBox["3", RowBox[List["-", "s"]]], RowBox[List["(", RowBox[List[RowBox[List["ZetaClassical", "[", RowBox[List["s", ",", "a"]], "]"]], "+", RowBox[List["ZetaClassical", "[", RowBox[List["s", ",", RowBox[List["a", "+", FractionBox["1", "3"]]]]], "]"]], "+", RowBox[List["ZetaClassical", "[", RowBox[List["s", ",", RowBox[List["a", "+", FractionBox["2", "3"]]]]], "]"]]]], ")"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mover> <mi> &#950; </mi> <mo> ^ </mo> </mover> <semantics> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;1&quot;, &quot;,&quot;, &quot;0&quot;]], &quot;)&quot;]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mrow> <mi> s </mi> <mo> , </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <mrow> <msup> <mn> 3 </mn> <mrow> <mo> - </mo> <mi> s </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mover> <mi> &#950; </mi> <mo> ^ </mo> </mover> <semantics> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;1&quot;, &quot;,&quot;, &quot;0&quot;]], &quot;)&quot;]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mrow> <mi> s </mi> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <msup> <mover> <mi> &#950; </mi> <mo> ^ </mo> </mover> <semantics> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;1&quot;, &quot;,&quot;, &quot;0&quot;]], &quot;)&quot;]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mrow> <mi> s </mi> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mfrac> <mn> 2 </mn> <mn> 3 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <msup> <mover> <mi> &#950; </mi> <mo> ^ </mo> </mover> <semantics> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;1&quot;, &quot;,&quot;, &quot;0&quot;]], &quot;)&quot;]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mrow> <mi> s </mi> <mo> , </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mn> 3 </mn> <mrow> <mo> - </mo> <mi> s </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mover> <mi> &#950; </mi> <mo> ^ </mo> </mover> <mo> ( </mo> <mrow> <mi> s </mi> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mover> <mi> &#950; </mi> <mo> ^ </mo> </mover> <mo> ( </mo> <mrow> <mi> s </mi> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mfrac> <mn> 2 </mn> <mn> 3 </mn> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mover> <mi> &#950; </mi> <mo> ^ </mo> </mover> <mo> ( </mo> <mrow> <mi> s </mi> <mo> , </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <apply> <partialdiff /> <list> <cn type='integer'> 1 </cn> <cn type='integer'> 0 </cn> </list> <apply> <ci> OverHat </ci> <ci> &#950; </ci> </apply> </apply> <ci> s </ci> <apply> <times /> <cn type='integer'> 3 </cn> <ci> a </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 3 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> <apply> <plus /> <apply> <apply> <partialdiff /> <list> <cn type='integer'> 1 </cn> <cn type='integer'> 0 </cn> </list> <apply> <ci> OverHat </ci> <ci> &#950; </ci> </apply> </apply> <ci> s </ci> <apply> <plus /> <ci> a </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> <apply> <apply> <partialdiff /> <list> <cn type='integer'> 1 </cn> <cn type='integer'> 0 </cn> </list> <apply> <ci> OverHat </ci> <ci> &#950; </ci> </apply> </apply> <ci> s </ci> <apply> <plus /> <ci> a </ci> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> <apply> <apply> <partialdiff /> <list> <cn type='integer'> 1 </cn> <cn type='integer'> 0 </cn> </list> <apply> <ci> OverHat </ci> <ci> &#950; </ci> </apply> </apply> <ci> s </ci> <ci> a </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ln /> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> <apply> <plus /> <apply> <apply> <ci> OverHat </ci> <ci> &#950; </ci> </apply> <ci> s </ci> <apply> <plus /> <ci> a </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> <apply> <apply> <ci> OverHat </ci> <ci> &#950; </ci> </apply> <ci> s </ci> <apply> <plus /> <ci> a </ci> <cn type='rational'> 2 <sep /> 3 </cn> </apply> </apply> <apply> <apply> <ci> OverHat </ci> <ci> &#950; </ci> </apply> <ci> s </ci> <ci> a </ci> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SuperscriptBox["ZetaClassical", TagBox[RowBox[List["(", RowBox[List["1", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List["s_", ",", RowBox[List["3", " ", "a_"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SuperscriptBox["3", RowBox[List["-", "s"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["ZetaClassical", TagBox[RowBox[List["(", RowBox[List["1", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List["s", ",", "a"]], "]"]], "+", RowBox[List[SuperscriptBox["ZetaClassical", TagBox[RowBox[List["(", RowBox[List["1", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List["s", ",", RowBox[List["a", "+", FractionBox["1", "3"]]]]], "]"]], "+", RowBox[List[SuperscriptBox["ZetaClassical", TagBox[RowBox[List["(", RowBox[List["1", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List["s", ",", RowBox[List["a", "+", FractionBox["2", "3"]]]]], "]"]]]], ")"]]]], "-", RowBox[List[RowBox[List["Log", "[", "3", "]"]], " ", SuperscriptBox["3", RowBox[List["-", "s"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["ZetaClassical", "[", RowBox[List["s", ",", "a"]], "]"]], "+", RowBox[List["ZetaClassical", "[", RowBox[List["s", ",", RowBox[List["a", "+", FractionBox["1", "3"]]]]], "]"]], "+", RowBox[List["ZetaClassical", "[", RowBox[List["s", ",", RowBox[List["a", "+", FractionBox["2", "3"]]]]], "]"]]]], ")"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998-2014 Wolfram Research, Inc.