Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Zeta






Mathematica Notation

Traditional Notation









Zeta Functions and Polylogarithms > Zeta[s,a] > Differentiation > Low-order differentiation > With respect to s > For zeta(s,a) > Derivatives at zero





http://functions.wolfram.com/10.02.20.0019.01









  


  










Input Form





Derivative[1, 0][Zeta][0, a] == LogGamma[a] - (1/2) Log[2 Pi] - I Pi Re[Floor[a]] (2 UnitStep[Im[a]] - 1) - (1/2) Pi I (1 + (-1)^(Floor[Re[a]] + Floor[-Re[a]])) UnitStep[-Im[a]] UnitStep[-Re[a]]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[SuperscriptBox["Zeta", TagBox[RowBox[List["(", RowBox[List["1", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List["0", ",", "a"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["LogGamma", "[", "a", "]"]], "-", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]], "-", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["Re", "[", RowBox[List["Floor", "[", "a", "]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", RowBox[List["UnitStep", "[", RowBox[List["Im", "[", "a", "]"]], "]"]]]], "-", "1"]], ")"]]]], "-", RowBox[List[FractionBox["1", "2"], " ", "\[Pi]", " ", "\[ImaginaryI]", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["Floor", "[", RowBox[List["Re", "[", "a", "]"]], "]"]], "+", RowBox[List["Floor", "[", RowBox[List["-", RowBox[List["Re", "[", "a", "]"]]]], "]"]]]]]]], ")"]], " ", RowBox[List["UnitStep", "[", RowBox[List["-", RowBox[List["Im", "[", "a", "]"]]]], "]"]], " ", RowBox[List["UnitStep", "[", RowBox[List["-", RowBox[List["Re", "[", "a", "]"]]]], "]"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> &#950; </mi> <semantics> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;1&quot;, &quot;,&quot;, &quot;0&quot;]], &quot;)&quot;]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <mrow> <mi> log&#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mo> &#8970; </mo> <mi> a </mi> <mo> &#8971; </mo> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <semantics> <mi> &#952; </mi> <annotation-xml encoding='MathML-Content'> <ci> UnitStep </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> &#8970; </mo> <mrow> <mo> - </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> &#8971; </mo> </mrow> <mo> + </mo> <mrow> <mo> &#8970; </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> &#8971; </mo> </mrow> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <semantics> <mi> &#952; </mi> <annotation-xml encoding='MathML-Content'> <ci> UnitStep </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mo> - </mo> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <semantics> <mi> &#952; </mi> <annotation-xml encoding='MathML-Content'> <ci> UnitStep </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mo> - </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <apply> <partialdiff /> <list> <cn type='integer'> 1 </cn> <cn type='integer'> 0 </cn> </list> <ci> Zeta </ci> </apply> <cn type='integer'> 0 </cn> <ci> a </ci> </apply> <apply> <plus /> <apply> <ci> LogGamma </ci> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <pi /> <apply> <real /> <apply> <floor /> <ci> a </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> UnitStep </ci> <apply> <imaginary /> <ci> a </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <pi /> <imaginaryi /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <floor /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <real /> <ci> a </ci> </apply> </apply> </apply> <apply> <floor /> <apply> <real /> <ci> a </ci> </apply> </apply> </apply> </apply> </apply> <apply> <ci> UnitStep </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <imaginary /> <ci> a </ci> </apply> </apply> </apply> <apply> <ci> UnitStep </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <real /> <ci> a </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SuperscriptBox["Zeta", TagBox[RowBox[List["(", RowBox[List["1", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List["0", ",", "a_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["LogGamma", "[", "a", "]"]], "-", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["Log", "[", RowBox[List["2", " ", "\[Pi]"]], "]"]]]], "-", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["Re", "[", RowBox[List["Floor", "[", "a", "]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["UnitStep", "[", RowBox[List["Im", "[", "a", "]"]], "]"]]]], "-", "1"]], ")"]]]], "-", RowBox[List[FractionBox["1", "2"], " ", "\[Pi]", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["Floor", "[", RowBox[List["Re", "[", "a", "]"]], "]"]], "+", RowBox[List["Floor", "[", RowBox[List["-", RowBox[List["Re", "[", "a", "]"]]]], "]"]]]]]]], ")"]], " ", RowBox[List["UnitStep", "[", RowBox[List["-", RowBox[List["Im", "[", "a", "]"]]]], "]"]], " ", RowBox[List["UnitStep", "[", RowBox[List["-", RowBox[List["Re", "[", "a", "]"]]]], "]"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998- Wolfram Research, Inc.