Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Zeta






Mathematica Notation

Traditional Notation









Zeta Functions and Polylogarithms > Zeta[s,a] > Differentiation > Low-order differentiation > With respect to s > For zeta(s,a) > Derivatives at negarive integer points





http://functions.wolfram.com/10.02.20.0041.01









  


  










Input Form





Derivative[1, 0][Zeta][1 - 2 n, 5/6] == ((9^n - 1) (2^(2 n - 1) + 1) BernoulliB[2 n] Pi)/ (Sqrt[3] 6^(2 n - 1) 8 n) + ((3^(2 n - 1) - 1) BernoulliB[2 n] Log[2])/ (6^(2 n - 1) 4 n) + ((2^(2 n - 1) - 1) BernoulliB[2 n] Log[3])/ (6^(2 n - 1) 4 n) + ((-1)^n (2^(2 n - 1) + 1) PolyGamma[2 n - 1, 1/3])/ (2 Sqrt[3] (12 Pi)^(2 n - 1)) + ((2^(2 n - 1) - 1) (3^(2 n - 1) - 1) Derivative[1][Zeta][-2 n + 1])/(2 6^(2 n - 1)) /; Element[n, Integers] && n > 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SuperscriptBox["Zeta", TagBox[RowBox[List["(", RowBox[List["1", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List[RowBox[List["1", "-", RowBox[List["2", "n"]]]], ",", FractionBox["5", "6"]]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["9", "n"], "-", "1"]], ")"]], RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["2", "n"]], "-", "1"]]], "+", "1"]], ")"]], RowBox[List["BernoulliB", "[", RowBox[List["2", "n"]], "]"]], "\[Pi]"]], RowBox[List[SqrtBox["3"], RowBox[List["(", SuperscriptBox["6", RowBox[List[RowBox[List["2", "n"]], "-", "1"]]], ")"]], "8", "n"]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["3", RowBox[List[RowBox[List["2", "n"]], "-", "1"]]], "-", "1"]], ")"]], RowBox[List["BernoulliB", "[", RowBox[List["2", "n"]], "]"]], RowBox[List["Log", "[", "2", "]"]]]], RowBox[List[SuperscriptBox["6", RowBox[List[RowBox[List["2", "n"]], "-", "1"]]], "4", "n"]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["2", "n"]], "-", "1"]]], "-", "1"]], ")"]], RowBox[List["BernoulliB", "[", RowBox[List["2", "n"]], "]"]], RowBox[List["Log", "[", "3", "]"]]]], RowBox[List[SuperscriptBox["6", RowBox[List[RowBox[List["2", "n"]], "-", "1"]]], "4", "n"]]], "+", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["2", "n"]], "-", "1"]]], "+", "1"]], ")"]], RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List[RowBox[List["2", "n"]], "-", "1"]], ",", FractionBox["1", "3"]]], "]"]]]], RowBox[List["2", SqrtBox["3"], SuperscriptBox[RowBox[List["(", RowBox[List["12", "\[Pi]"]], ")"]], RowBox[List[RowBox[List["2", "n"]], "-", "1"]]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["2", "n"]], "-", "1"]]], "-", "1"]], ")"]], RowBox[List["(", RowBox[List[SuperscriptBox["3", RowBox[List[RowBox[List["2", "n"]], "-", "1"]]], "-", "1"]], ")"]], RowBox[List[SuperscriptBox["Zeta", "\[Prime]", Rule[MultilineFunction, None]], "[", RowBox[List[RowBox[List[RowBox[List["-", "2"]], "n"]], "+", "1"]], "]"]]]], RowBox[List["2", " ", SuperscriptBox["6", RowBox[List[RowBox[List["2", "n"]], "-", "1"]]]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", ">", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msup> <mi> &#950; </mi> <semantics> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;1&quot;, &quot;,&quot;, &quot;0&quot;]], &quot;)&quot;]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </mrow> <mo> , </mo> <mfrac> <mn> 5 </mn> <mn> 6 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mn> 3 </mn> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <msup> <mn> 6 </mn> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mn> 4 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </mfrac> <mo> &#8290; </mo> <msub> <semantics> <mi> B </mi> <annotation encoding='Mathematica'> TagBox[&quot;B&quot;, BernoulliB] </annotation> </semantics> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </msub> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 3 </mn> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <msup> <mn> 6 </mn> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mn> 4 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </mfrac> <mo> &#8290; </mo> <msub> <semantics> <mi> B </mi> <annotation encoding='Mathematica'> TagBox[&quot;B&quot;, BernoulliB] </annotation> </semantics> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </msub> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mn> 9 </mn> <mi> n </mi> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#960; </mi> <mtext> </mtext> </mrow> <mrow> <msqrt> <mn> 3 </mn> </msqrt> <mo> &#8290; </mo> <msup> <mn> 6 </mn> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mn> 8 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </mfrac> <mo> &#8290; </mo> <msub> <semantics> <mi> B </mi> <annotation encoding='Mathematica'> TagBox[&quot;B&quot;, BernoulliB] </annotation> </semantics> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </msub> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mn> 3 </mn> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mn> 6 </mn> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msup> <mi> &#950; </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mn> 3 </mn> </msqrt> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 12 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <msup> <semantics> <mi> &#8469; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalN]&quot;, Function[List[], Integers]] </annotation> </semantics> <mo> + </mo> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <apply> <partialdiff /> <list> <cn type='integer'> 1 </cn> <cn type='integer'> 0 </cn> </list> <ci> Zeta </ci> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> </apply> <cn type='rational'> 5 <sep /> 6 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <power /> <cn type='integer'> 3 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <ln /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 6 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 4 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> BernoulliB </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <ln /> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 6 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 4 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> BernoulliB </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <power /> <cn type='integer'> 9 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <pi /> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 6 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 8 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> BernoulliB </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <power /> <cn type='integer'> 3 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 6 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> D </ci> <apply> <ci> Zeta </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <plus /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 12 </cn> <pi /> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <apply> <ci> SuperPlus </ci> <integers /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SuperscriptBox["Zeta", TagBox[RowBox[List["(", RowBox[List["1", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List[RowBox[List["1", "-", RowBox[List["2", " ", "n_"]]]], ",", FractionBox["5", "6"]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["9", "n"], "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["2", " ", "n"]], "-", "1"]]], "+", "1"]], ")"]], " ", RowBox[List["BernoulliB", "[", RowBox[List["2", " ", "n"]], "]"]], " ", "\[Pi]"]], RowBox[List[SqrtBox["3"], " ", SuperscriptBox["6", RowBox[List[RowBox[List["2", " ", "n"]], "-", "1"]]], " ", "8", " ", "n"]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["3", RowBox[List[RowBox[List["2", " ", "n"]], "-", "1"]]], "-", "1"]], ")"]], " ", RowBox[List["BernoulliB", "[", RowBox[List["2", " ", "n"]], "]"]], " ", RowBox[List["Log", "[", "2", "]"]]]], RowBox[List[SuperscriptBox["6", RowBox[List[RowBox[List["2", " ", "n"]], "-", "1"]]], " ", "4", " ", "n"]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["2", " ", "n"]], "-", "1"]]], "-", "1"]], ")"]], " ", RowBox[List["BernoulliB", "[", RowBox[List["2", " ", "n"]], "]"]], " ", RowBox[List["Log", "[", "3", "]"]]]], RowBox[List[SuperscriptBox["6", RowBox[List[RowBox[List["2", " ", "n"]], "-", "1"]]], " ", "4", " ", "n"]]], "+", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["2", " ", "n"]], "-", "1"]]], "+", "1"]], ")"]], " ", RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List[RowBox[List["2", " ", "n"]], "-", "1"]], ",", FractionBox["1", "3"]]], "]"]]]], RowBox[List["2", " ", SqrtBox["3"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["12", " ", "\[Pi]"]], ")"]], RowBox[List[RowBox[List["2", " ", "n"]], "-", "1"]]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["2", " ", "n"]], "-", "1"]]], "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["3", RowBox[List[RowBox[List["2", " ", "n"]], "-", "1"]]], "-", "1"]], ")"]], " ", RowBox[List[SuperscriptBox["Zeta", "\[Prime]", Rule[MultilineFunction, None]], "[", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "n"]], "+", "1"]], "]"]]]], RowBox[List["2", " ", SuperscriptBox["6", RowBox[List[RowBox[List["2", " ", "n"]], "-", "1"]]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998-2014 Wolfram Research, Inc.