Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Zeta






Mathematica Notation

Traditional Notation









Zeta Functions and Polylogarithms > Zeta[s,a] > Differentiation > Low-order differentiation > With respect to s > For zeta(s,a) > Derivatives at negarive integer points





http://functions.wolfram.com/10.02.20.0043.01









  


  










Input Form





Derivative[1, 0][Zeta][-n, a] + (-1)^n Derivative[1, 0][Zeta][-n, 1 - a] == ((Pi I)/(n + 1)) BernoulliB[n + 1, a] + ((n!/(2 Pi)^n) PolyLog[n + 1, E^(2 Pi I a)])/E^(Pi I (n/2)) /; Inequality[-(Pi/2), Less, Arg[a], LessEqual, Pi/2] && Inequality[-(Pi/2), Less, Arg[1 - a], LessEqual, Pi/2] && Element[n, Integers] && n > 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List[SuperscriptBox["Zeta", TagBox[RowBox[List["(", RowBox[List["1", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List[RowBox[List["-", "n"]], ",", "a"]], "]"]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], RowBox[List[SuperscriptBox["Zeta", TagBox[RowBox[List["(", RowBox[List["1", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List[RowBox[List["-", "n"]], ",", RowBox[List["1", "-", "a"]]]], "]"]]]]]], "\[Equal]", RowBox[List[RowBox[List[FractionBox[RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], RowBox[List["n", "+", "1"]]], RowBox[List["BernoulliB", "[", RowBox[List[RowBox[List["n", "+", "1"]], ",", "a"]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[Pi]"]], " ", "\[ImaginaryI]", " ", RowBox[List["n", "/", "2"]]]]], FractionBox[RowBox[List["n", "!"]], SuperscriptBox[RowBox[List["(", RowBox[List["2", "\[Pi]"]], ")"]], "n"]], RowBox[List["PolyLog", "[", RowBox[List[RowBox[List["n", "+", "1"]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["2", "\[Pi]", " ", "\[ImaginaryI]", " ", "a"]]]]], "]"]]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["\[Pi]", "2"]]], "<", RowBox[List["Arg", "[", "a", "]"]], "\[LessEqual]", FractionBox["\[Pi]", "2"]]], "\[And]", RowBox[List[RowBox[List["-", FractionBox["\[Pi]", "2"]]], "<", RowBox[List["Arg", "[", RowBox[List["1", "-", "a"]], "]"]], "\[LessEqual]", FractionBox["\[Pi]", "2"]]], "\[And]", RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", ">", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mrow> <msup> <mi> &#950; </mi> <semantics> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;1&quot;, &quot;,&quot;, &quot;0&quot;]], &quot;)&quot;]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> , </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> &#8290; </mo> <mrow> <msup> <mi> &#950; </mi> <semantics> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, RowBox[List[&quot;1&quot;, &quot;,&quot;, &quot;0&quot;]], &quot;)&quot;]], Derivative] </annotation> </semantics> </msup> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> &#63449; </mo> <mrow> <mrow> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> B </mi> <annotation encoding='Mathematica'> TagBox[&quot;B&quot;, BernoulliB] </annotation> </semantics> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> <mtext> </mtext> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <msup> <mi> &#8519; </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> </mrow> </msup> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mi> &#960; </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> &lt; </mo> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> &#8804; </mo> <mfrac> <mi> &#960; </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mi> &#960; </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> &lt; </mo> <mrow> <mi> arg </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8804; </mo> <mfrac> <mi> &#960; </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> &#8743; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <msup> <semantics> <mi> &#8469; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalN]&quot;, Function[List[], Integers]] </annotation> </semantics> <mo> + </mo> </msup> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <plus /> <apply> <apply> <partialdiff /> <list> <cn type='integer'> 1 </cn> <cn type='integer'> 0 </cn> </list> <ci> Zeta </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <ci> a </ci> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <apply> <partialdiff /> <list> <cn type='integer'> 1 </cn> <cn type='integer'> 0 </cn> </list> <ci> Zeta </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <pi /> <imaginaryi /> <apply> <power /> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> BernoulliB </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <ci> a </ci> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <pi /> <imaginaryi /> <ci> n </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <factorial /> <ci> n </ci> </apply> <apply> <power /> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> PolyLog </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> <imaginaryi /> <ci> a </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <ci> Inequality </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <lt /> <apply> <arg /> <ci> a </ci> </apply> <leq /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Inequality </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <lt /> <apply> <arg /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <leq /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <apply> <ci> SuperPlus </ci> <integers /> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List[SuperscriptBox["Zeta", TagBox[RowBox[List["(", RowBox[List["1", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List[RowBox[List["-", "n_"]], ",", "a_"]], "]"]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n_"], " ", RowBox[List[SuperscriptBox["Zeta", TagBox[RowBox[List["(", RowBox[List["1", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List[RowBox[List["-", "n_"]], ",", RowBox[List["1", "-", "a_"]]]], "]"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], ")"]], " ", RowBox[List["BernoulliB", "[", RowBox[List[RowBox[List["n", "+", "1"]], ",", "a"]], "]"]]]], RowBox[List["n", "+", "1"]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["-", "\[Pi]"]], ")"]], " ", "\[ImaginaryI]", " ", "n"]]], " ", RowBox[List["n", "!"]], " ", RowBox[List["PolyLog", "[", RowBox[List[RowBox[List["n", "+", "1"]], ",", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[Pi]", " ", "\[ImaginaryI]", " ", "a"]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["2", " ", "\[Pi]"]], ")"]], "n"]]]], "/;", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["\[Pi]", "2"]]], "<", RowBox[List["Arg", "[", "a", "]"]], "\[LessEqual]", FractionBox["\[Pi]", "2"]]], "&&", RowBox[List[RowBox[List["-", FractionBox["\[Pi]", "2"]]], "<", RowBox[List["Arg", "[", RowBox[List["1", "-", "a"]], "]"]], "\[LessEqual]", FractionBox["\[Pi]", "2"]]], "&&", RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998-2014 Wolfram Research, Inc.