Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Zeta






Mathematica Notation

Traditional Notation









Zeta Functions and Polylogarithms > Zeta[s,a] > Differentiation > Symbolic differentiation > With respect to s > For zeta^(s,a)





http://functions.wolfram.com/10.02.20.0064.01









  


  










Input Form





D[ZetaClassical[s, a], {s, n}] == (-1)^n Sum[Log[a + k]^n/(a + k)^s, {k, 0, Re[b - a] - 1}] + D[ZetaClassical[s, b - Min[0, Re[b - a]]], {s, n}] /; Element[Re[b - a], Integers] && Im[b - a] == 0 && Element[n, Integers] && n > 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["s", ",", "n"]], "}"]]], RowBox[List["ZetaClassical", "[", RowBox[List["s", ",", "a"]], "]"]]]], "\[Equal]", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List[RowBox[List["Re", "[", RowBox[List["b", "-", "a"]], "]"]], "-", "1"]]], FractionBox[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["a", "+", "k"]], "]"]], "n"], SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "k"]], ")"]], "s"]]]]]], "+", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["s", ",", "n"]], "}"]]], RowBox[List["ZetaClassical", "[", RowBox[List["s", ",", RowBox[List["b", "-", RowBox[List["Min", "[", RowBox[List["0", ",", RowBox[List["Re", "[", RowBox[List["b", "-", "a"]], "]"]]]], "]"]]]]]], "]"]]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Re", "[", RowBox[List["b", "-", "a"]], "]"]], "\[Element]", "Integers"]], "\[And]", RowBox[List[RowBox[List["Im", "[", RowBox[List["b", "-", "a"]], "]"]], "\[Equal]", "0"]], "\[And]", RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", ">", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mi> n </mi> </msup> <mrow> <mover> <mi> &#950; </mi> <mo> ^ </mo> </mover> <mo> ( </mo> <mrow> <mi> s </mi> <mo> , </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> s </mi> <mi> n </mi> </msup> </mrow> </mfrac> <mo> &#63449; </mo> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mi> n </mi> </msup> <mrow> <mover> <mi> &#950; </mi> <mo> ^ </mo> </mover> <mo> ( </mo> <mrow> <mi> s </mi> <mo> , </mo> <mrow> <mi> b </mi> <mo> - </mo> <mrow> <mi> min </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> s </mi> <mi> n </mi> </msup> </mrow> </mfrac> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mfrac> <mrow> <msup> <mi> log </mi> <mi> n </mi> </msup> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mi> s </mi> </msup> </mfrac> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8712; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[List[], Integers]] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mn> 0 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> s </ci> <degree> <ci> n </ci> </degree> </bvar> <apply> <apply> <ci> OverHat </ci> <ci> &#950; </ci> </apply> <ci> s </ci> <ci> a </ci> </apply> </apply> <apply> <plus /> <apply> <partialdiff /> <bvar> <ci> s </ci> <degree> <ci> n </ci> </degree> </bvar> <apply> <apply> <ci> OverHat </ci> <ci> &#950; </ci> </apply> <ci> s </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <min /> <cn type='integer'> 0 </cn> <apply> <real /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <apply> <real /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <power /> <apply> <ln /> <apply> <plus /> <ci> a </ci> <ci> k </ci> </apply> </apply> <ci> n </ci> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <ci> k </ci> </apply> <ci> s </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <apply> <real /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <integers /> </apply> <apply> <eq /> <apply> <imaginary /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <in /> <ci> n </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["s_", ",", "n_"]], "}"]]]]], RowBox[List["ZetaClassical", "[", RowBox[List["s_", ",", "a_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List[RowBox[List["Re", "[", RowBox[List["b", "-", "a"]], "]"]], "-", "1"]]], FractionBox[SuperscriptBox[RowBox[List["Log", "[", RowBox[List["a", "+", "k"]], "]"]], "n"], SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "k"]], ")"]], "s"]]]]]], "+", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["s", ",", "n"]], "}"]]]]], RowBox[List["ZetaClassical", "[", RowBox[List["s", ",", RowBox[List["b", "-", RowBox[List["Min", "[", RowBox[List["0", ",", RowBox[List["Re", "[", RowBox[List["b", "-", "a"]], "]"]]]], "]"]]]]]], "]"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Re", "[", RowBox[List["b", "-", "a"]], "]"]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["Im", "[", RowBox[List["b", "-", "a"]], "]"]], "\[Equal]", "0"]], "&&", RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998-2014 Wolfram Research, Inc.