Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
Zeta






Mathematica Notation

Traditional Notation









Zeta Functions and Polylogarithms > Zeta[s,a] > Summation > Infinite summation > Infinite summation > For zeta(s,a)





http://functions.wolfram.com/10.02.23.0007.01









  


  










Input Form





Sum[(((-1)^k (k + 1)! z^k)/Pochhammer[a, k]) Zeta[k + 2, 1/2], {k, 0, Infinity}] == (Gamma[a]/(2 z^2)) ((2 EulerGamma z + (-2 + a) Log[4])/Gamma[-1 + a] + 2^(1 - a) z^(3 - a) ((-2^a) PolyGamma[2 - a, z] + 8 PolyGamma[2 - a, 2 z]))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List[RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], "!"]], SuperscriptBox["z", "k"]]], RowBox[List["Pochhammer", "[", RowBox[List["a", ",", "k"]], "]"]]], RowBox[List["Zeta", "[", RowBox[List[RowBox[List["k", "+", "2"]], ",", FractionBox["1", "2"]]], "]"]]]]]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", "a", "]"]], " "]], RowBox[List["2", " ", SuperscriptBox["z", "2"]]]], RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["2", " ", "EulerGamma", " ", "z"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", "a"]], ")"]], " ", RowBox[List["Log", "[", "4", "]"]]]]]], RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "1"]], "+", "a"]], "]"]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List["1", "-", "a"]]], " ", SuperscriptBox["z", RowBox[List["3", "-", "a"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["2", "a"]]], " ", RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["2", "-", "a"]], ",", "z"]], "]"]]]], "+", RowBox[List["8", " ", RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["2", "-", "a"]], ",", RowBox[List["2", " ", "z"]]]], "]"]]]]]], ")"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> k </mi> </msup> </mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, &quot;a&quot;, &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> k </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Zeta]&quot;, &quot;(&quot;, RowBox[List[TagBox[RowBox[List[&quot;k&quot;, &quot;+&quot;, &quot;2&quot;]], Zeta, Rule[Editable, True], Rule[Selectable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;1&quot;, &quot;2&quot;], Zeta, Rule[Editable, True], Rule[Selectable, True]]]], &quot;)&quot;]], InterpretTemplate[Function[List[ZetaDump`e1$, ZetaDump`e2$], Zeta[ZetaDump`e1$, ZetaDump`e2$]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> </mrow> </mrow> <mtext> </mtext> <mo> &#63449; </mo> <mrow> <mfrac> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mn> 2 </mn> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <msup> <mi> z </mi> <mrow> <mn> 3 </mn> <mo> - </mo> <mi> a </mi> </mrow> </msup> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mn> 2 </mn> <mi> a </mi> </msup> <mo> &#8290; </mo> <mrow> <msup> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mtext> </mtext> <mo> + </mo> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <semantics> <mi> &#8509; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubledGamma]&quot;, Function[List[], EulerGamma]] </annotation> </semantics> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 4 </mn> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <factorial /> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> k </ci> </apply> <apply> <power /> <apply> <ci> Pochhammer </ci> <ci> a </ci> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Zeta </ci> <apply> <plus /> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <ci> Gamma </ci> <ci> a </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <cn type='integer'> 3 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <eulergamma /> <ci> z </ci> </apply> <apply> <times /> <apply> <plus /> <ci> a </ci> <cn type='integer'> -2 </cn> </apply> <apply> <ln /> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List[RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], "!"]], " ", SuperscriptBox["z_", "k"]]], ")"]], " ", RowBox[List["Zeta", "[", RowBox[List[RowBox[List["k", "+", "2"]], ",", FractionBox["1", "2"]]], "]"]]]], RowBox[List["Pochhammer", "[", RowBox[List["a_", ",", "k"]], "]"]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["Gamma", "[", "a", "]"]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["2", " ", "EulerGamma", " ", "z"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", "a"]], ")"]], " ", RowBox[List["Log", "[", "4", "]"]]]]]], RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "1"]], "+", "a"]], "]"]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List["1", "-", "a"]]], " ", SuperscriptBox["z", RowBox[List["3", "-", "a"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["2", "a"]]], " ", RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["2", "-", "a"]], ",", "z"]], "]"]]]], "+", RowBox[List["8", " ", RowBox[List["PolyGamma", "[", RowBox[List[RowBox[List["2", "-", "a"]], ",", RowBox[List["2", " ", "z"]]]], "]"]]]]]], ")"]]]]]], ")"]]]], RowBox[List["2", " ", SuperscriptBox["z", "2"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02





© 1998-2014 Wolfram Research, Inc.