
General Identities

Notations

Traditional name

Abstract sufficiently smooth (analytic or piecewise differentiable) function

Traditional notation

f HzL
Mathematica StandardForm notation

f@zD

Primary definition

f HzL
The arbitrary function f HzL in this document is defined for all complex z or for some region of c (if it is described

explicitly). In the majority of cases, it is assumed to be an analytical function of the variable z (and sufficiently fast

decaying if needed for the convergence of integrals and sums).

General characteristics

Domain and analyticity

In the majority of cases, f HzL is an analytical function of z, which is defined in the whole complex z plane (if special

restrictions are not shown).

z� f HzL � C�C

Symmetries and periodicities

f H-zL � f HzL �; foHzL � 0 í f HzL � feHzL + foHzL í feHzL �
f HzL + f H-zL

2
í foHzL �

f HzL - f H-zL
2

This formula is the condition for a function to be even. For example, the function f HzL � cosHzL is an even function.

f H-zL � - f HzL �; feHzL � 0 í f HzL � feHzL + foHzL í feHzL �
f HzL + f H-zL

2
í foHzL �

f HzL - f H-zL
2

This formula is the condition for a function to be odd. For example, the function f HzL � sinHzL is an odd function.



f Hz + m ΡL � f HzL �; m Î Z

This formula reflects periodicity of function f HzL  (if f  is periodic with period Ρ). The analytic function f HzL is

called periodic if there exists a complex constant Ρ ¹ 0 , such

that f Hz + ΡL � f HzL �; z Î C. The number Ρ  (with minimal

value  Ρ¤) is called the period of the function f HzL. For example, the functions f HzL � sinHzL and f HzL � tanHzL have

periods Ρ � 2 Π and Ρ � Π accordingly.

Ρ � 2 Π

Series representations

General remarks

There are three main possibilities to represent an arbitrary function f HzL as an infinite sum of simple functions. The

first is the power series expansion and its two important generalizations, the Laurent series and the Puiseux series.

The  second  is  the  q-series  and  Dirichlet  series  (general  and  periodic),  and  the  third  is  the  Fourier  series

(exponential,  trigonometric,  and  generalized  Fourier  series  by  the  orthogonal  systems).  These  representations

provide very general convenient methods for studying a wide range of functions. 

The terms of  a  power series  expansion or  its  generalizations include power functions in the form Hz - z0Lk  or

Hz - z0Lk�m; the terms in the q-series include expressions like qk �; q � ΦHzL; the terms in a Dirichlet series include

exponential functions in the form expH-Λk  sL. The Fourier trigonometric series usually provide expansions in terms

of cosHk xL and sinHk xL (for trigonometric series) and in terms of ãä k x  (for exponential series). Generalized Fourier

series  provide  expansions  in  terms  of  other  orthogonal  systems of  functions,  such as  the  classical  orthogonal

polynomials. With each of these methods, you can express in closed form an enormous number of non-elementary

functions in terms of only simple elementary functions.

Generalized power series

Expansions at z � z0

For the function itself

f HzL « â
k=0

¥ f HkLHz0L
k !

 Hz - z0Lk �;  z - z0¤ < R £ ¥

The Taylor series,  first  investigated by B.  Taylor  in  1715,  gives the above Taylor  expansion for  an arbitrary

function f HzL at a finite point z � z0.
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The sign « means that the Taylor series should not be taken as purely equal to f HzL, since it may not converge

everywhere on the complex plane. The series converges absolutely in some disk of radius R centered on z0, where

R is called the radius of convergence. On the disk  z - z0¤ < R, you can exchange the sign « for �. You can state

for most functions that R = limk®¥  ck¤-1�k �; ck =
f HkLIz0M

k!
. The Taylor series coefficients ck  can also be evaluated by

the Cauchy integral formula ck = 1
2 Π ä

 ÙCΡ

f HtL
It-z0Mk+1

 â t �; CΡ �  t - z0¤ � Ρ < R.

There are then three cases for R: either R is infinite, R is zero, or R is some finite positive number greater than 0.

If R = 0, this series converges only at the point z0, and the Taylor series offers little analytical benefit. For example,

the series Úk=0
¥ k ! Hz - z0Lk  has no disk of convergence around z0, since the coefficient k ! makes the terms grow

infinitely large no matter how small  z - z0¤ becomes.

If R = ¥, the series converges in the entire plane. In such cases it either represents an entire transcendental func-

tion—as, for example, the series Úk=0
¥ Hz - z0Lk � k ! does for the exponential function expHz - z0L—or it contains only

a finite number of terms and therefore represents a polynomial.

If 0 < R < ¥, the sum of the series defines a regular analytic function having at least one singular point on the

circle  z - z0¤ � R. There may be finitely or infinitely many singular points on the circle, but there must be at least

one. The power series Úk=1
¥ Hz - z0Lk � k = -logHz0 + 1 - zL, for example, has only one singular point, at z = z0 + 1.

Other power series have dense sets of singular points on the circle, such as the series Úk=0
¥ zk!, which has many

singular points on the unit circle, the edge of its natural region of analyticity. The same holds true, with the same

region  of  analyticity,  for  the  series  representation  of  the  logarithm  of  InverseEllipticNomeQ:

log J q-1  HzL
16

 zN = Úk=1
¥ log J 1+z2 k

1+z2 k+1
N8

.

Inside the region of convergence of the series, you can exchange the sign « for � in the preceding Taylor expan-

sion for an arbitrary function f HzL at a finite point z0:

f HzL � â
k=0

¥ f HkLHz0L
k !

 Hz - z0Lk �;  z - z0¤ < R £ ¥

Infinite Taylor series expansion can be approximated by the truncated version, the finite Taylor polynomial expan-

sions. But in these cases, instead of the equality sign �, you will use the sign µ and an ellipsis … or an explicit

Landau O term, for example:

f HzL µ f Hz0L + f ¢Hz0L Hz - z0L +
1

2
f ¢¢Hz0L Hz - z0L2 +

1

6
f H3LHz0L Hz - z0L3 + ¼ �; Hz ® z0L

f HzL µ â
k=0

n f HkLHz0L
k !

Hz - z0Lk + OHHz - z0LnL
The Landau O term OHHz - z0LnL in the preceding relation means that the next expression is bounded near point

z � z0:
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Hz - z0L-n f HzL - â
k=0

n f HkLHz0L Hz - z0Lk

k !
< const

For compositions with elementary functions

Including power functions

Ha f HzLrLb
� exp 2 Π ä b r

Π - argHcL - ImHm logHz - z0LL
2 Π

+

Π - argHa crL - ImHm r logHz - z0LL
2 Π

- r
Π - argHcL - ImHm logHz - z0LL

2 Π
+

Π - argHa crL - argJ z

a cr N
2 Π

 

Ha crLb Hz - z0Lm r b â
k=0

¥ H-1Lk H-bLk

k !
 c-r

f HzL
Hz - z0Lm

r

- 1

k �; Hz ® z0L í lim
z®z0

f HzL
Hz - z0Lm

� c í c ¹ 0

Including logarithmic and power functions

logHa f HzLrL � 2 ä Π r
Π - argHcL - ImHm logHz - z0LL

2 Π
+

Π - argHa crL - ImHm r logHz - z0LL
2 Π

- r
Π - argHcL - ImHm logHz - z0LL

2 Π
+

Π - argHa crL - argJ z

a cr N
2 Π

+

logHa crL + m r logHz - z0L + â
k=1

¥ H-1Lk-1

k
 c-r

f HzL
Hz - z0Lm

r

- 1

k �; Hz ® z0L í lim
z®z0

f HzL
Hz - z0Lm

� c í c ¹ 0

logIa Iq f HzLMrM � 2 ä Π r
Π - ImHlogHqL f Hz0LL

2 Π
+

Π - argHaL - ImHr logHqL f Hz0LL
2 Π

- ReHrL Π - ImHlogHqL f Hz0LL
2 Π

+

logHaL + r logHqL â
k=0

¥ f HkLHz0L Hz - z0Lk

k !
�; Hz ® z0L

StringTake[" |||", {6, 4}] Expansions at z � 0

For the function itself

f HzL µ f H0L + f ¢H0L z +
1

2
f ¢¢H0L z2 +

1

6
f H3LH0L z3 + ¼ �; Hz ® z0L

f HzL µ f H0L + f ¢H0L z +
1

2
f ¢¢H0L z2 +

1

6
f H3LH0L z3 + OIz4M
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f HzL « â
k=0

¥ f HkLH0L
k !

 zk �;  z¤ < R £ ¥

f HzL µ f H0L H1 + OHzLL
Laurent series

f HzL « â
k=-¥

¥

ckHz - z0Lk �; ck �
1

2 Π ä
à

CΡ

f HtL
Ht - z0Lk+1

 â t í k Î Z

The Laurent series, first studied by P. Laurent in 1843, gives the Laurent expansion for the function f HzL around a

finite point z0, where CΡ  is the circle  t - z0¤ = Ρ with radius Ρ, r < Ρ < R. Here R is the radius of convergence of

its  regular  part  Úk=0
¥ ckHz - z0Lk  and  1 � r  is  the  radius  of  convergence  of  its  principal  part

Úk=-¥
-1 ckHz - z0Lk = Úk=1

¥ c-kHz - z0L-k.  The  coefficient  c-1  of  the  power  Hz - z0L-1  in  the  Laurent  expansion  of

function f HzL is called the residue of f HzL at the point z0:

reszH f HzLL Hz0L �
1

2 Π ä
à

CΡ

f HtL â t

If r < R, then the Laurent series converges absolutely in the ring  r <  z - z0¤ < R, where its sum defines an analytic

function. If r = 0 and the principal part includes only a finite number of terms (that is, if ck = 0 for k < -n < 0 for

some n Î N+), then f HzL has a pole of order n at the point z = z0.

For example, the function cotHzL has a pole of order 1 (also called a simple pole) at the point z = 0, since it has only

one term in the principal part of its Laurent series expansion:

cotHzL �
1

z
+ â

k=1

¥ H-1Lk  22 k  B2 k

H2 kL !
 z2 k-1 µ

1

z
-

z

3
-

z3

45
+ º

If r = 0 and the principal part includes an infinite number of terms, this analytic function has an essential singular-

ity at the point z = z0. For example, the sum Úk=-¥
0 zk � H-kL ! = expH1 � zL has an essential singularity at the point

z = 0.

Puiseux series

f HzL « â
k=-¥

¥

ckHz - z0Lk�m

The  Puiseux  series,  first  studied  by  V.-A.  Puiseux  in  1850,  expand  f HzL  around  a  finite  point  z0  as

f HzL « Úk=-¥
¥ ck  jkHz - z0L,  with  jkHwL  usually  chosen  as  jkHwL = wk�m.  (Other  choices  for  jkHwL are  possible

through the use of iterated logarithms of the form jkHwL = wk�m log rHwL, jkHwL � wk�m log rHwL log sHlogHwLL, and so

on.)  Choosing jkHwL = wk�m  gives  the  Puiseux series  for  algebraic  bivariate  functions  (because  such functions

should not include logarithms like log rHwL).
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If this series contains only a finite number of nonzero coefficients ck  with negative indices k, the point z0  is an

algebraic branch point of order m - 1; otherwise it is a transcendental branch point, such as the point z = 0 for the

function expH1 � zL .

Puiseux series are widely used for describing solutions of differential equations near singular points and, in particu-

lar,  for  representations  of  elementary  and  special  functions  near  their  singular  points.  The  named elementary

functions can have rather complicated behaviors near their singular points.

cos-1HzL � 2 1 - z â
k=0

¥ H-1Lk J 1

2
N
k

Hz - 1Lk

2k H2 k + 1L k !
�;  z - 1¤ < 1

The  point  z = 1  is  an  algebraic  branch  point  of  order  1  for  the  function

cos-1HzL � I 1 - z � z - 1 N logIz + z - 1 z + 1 N.  This  function  has  the  Puiseux  representation  for  its

fundamental branch near point z = 1.

A similar representation occurs near the branch point z = -1. 

cos-1HzL �
Π

2
-

z

2 -z2

 logI-4 z2M -
1

2
â
k=1

¥ J 1

2
N
k

z-2 k

k k !
�;  z¤ > 1

This expansion near the branch point z = ¥ shows that cos-1HzL has a logarithmic-type singularity that can provide

infinitely many values depending on the direction of approach of the variable z to ¥.

zz � â
k=0

¥ zk  logkHzL
k !

This Puiseux series for zz near the point z = 0 includes powers of logarithmic functions.

The Puiseux series for log2HlogHzLL near the point z = 0 coincides with itself.

WHzL � logHzL - logHlogHzLL - â
k=0

¥ H-1Lk

logkHzL  â
j=1

k Sk
H- j+k+1L

log jHlogHzLL
j !

µ

logHzL - logHlogHzLL +
logHlogHzLL

logHzL +
log2HlogHzLL - logHlogHzLL

2 log2HzL + º �; H z¤ ® ¥L
This Puiseux series for the ProductLog function WH1 � zL near the point z = ¥ has a more complicated structure

involving  iterated  logarithms.  The  complicated  structure  is  to  be  expected  from  inverse  functions  like

ProductLog.

q-series

f HzL « â
k=-¥

¥

ck qk �; q � ΦHzL
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This q-series is widely used in applications. In the case  q � ΦHzL � ãä z, ck � 1
2 Π

 Ù-Π

Π
f HtL ã-ä k t  â t, it coincides with

exponential Fourier series.

In  very  particular  cases,  q-series  can  coincide  with  some  trigonometric  functions.  For  example,  if

q � ΦHzL � ãä z, c-1 � c1 � 1
2
, and all other ck are zero, then f HzL � cosHzL.

In more complicated cases, q-series can define different special functions, for example elliptic theta functions: 

J3Hw, qL � 1 + â
k=-¥

¥ 2 cosJ2 k wN k Î Z í k > 0

0 True
qk.

Dirichlet series

General Dirichlet series

f HzL « â
k=0

¥

ak  expH-Λk  zL �; ReHzL > c ß c = lim
k®¥

logH ak¤L
Λk

If all coefficients Λk > 0, this Dirichlet series for the function f HzL converges in some open half-plane ReHzL > c. In

this  case,  for  many  Dirichlet  series  the  abscissa  of  absolute  convergence  can  be  found  by  the  formula

c � limk®¥
logI¡ak ¥M

Λk
.

In  the  more  general  case  0 <  Λ0¤ £  Λ1¤ £ ¼,  the  Dirichlet  series  absolutely  converges  in  some  open  convex

domain. In both cases, the sum of the Dirichlet series is an analytic function in the domain of convergence.

For example, if Λk = 2 k and ak = 1 or ak = H-1Lk, you have, respectively, the Dirichlet series:

â
k=0

¥

ã-2 k z � ã z
cschHzL

2
�; Re HzL > 0

â
k=0

¥ H-1Lk  ã-2 k z � -
ã z sechHzL

2
�; ReHzL > 0

In the case Λk = logHkL,  you have the ordinary Dirichlet  series  f HzL « Úk=1
¥ Hak � kzL,  which in its  simplest  case

(ak = 1, ReHzL > 1) is the Riemann zeta function  ΖHzL = Úk=1
¥ H1 � kzL.  Other interesting examples of the Dirichlet

series include the series for elliptic theta functions. For instance, if ak = 1
2
qk2

 and Λk = ¡2kä, you have the represen-

tations:

â
k=1

¥

qk2
 cosH2 k zL �

1

2
 â
k=1

¥

qk2
 ã2 k ä z +

1

2
 â
k=1

¥

qk2
 ã-2 k ä z �;  q¤ < 1

â
k=1

¥

qk2
 cosH2 k zL �

1

2
HJ3Hz, qL - 1L �;  q¤ < 1

Generalized Fourier series 
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f HxL « â
k=0

¥

dk ΨkHxL �; dk � à
a

b

ΨkHtL f HtL â t í k Î N í à
a

b

ΨmHtL ΨnHtL â t � ∆m,n

Under some additional conditions (such as piecewise differentiability), this Fourier series of an arbitrary function

f HxL by the orthogonal system 8ΨkHxL< with Fourier coefficients dk  converges to f HxL on an interval Ha, bL at the

points  of  continuity  of  f ,  and  to  1
2

 H f Hx + 0L + f Hx - 0LL  at  the  points  of  discontinuity  of  f ,  where

f Hx ± 0L = lim
Ε®+0

 f Hx ± ΕL).
â
k=0

¥

dk
2 £ à

a

b

f HtL2 â t �; dk � à
a

b

ΨkHtL f HtL â t í k Î N í à
a

b

ΨmHtL ΨnHtL â t � ∆m,n

The inequality takes place for all orthogonal systems 8ΨkHxL<; it is called Bessel's inequality. If it can be transformed

into Parseval's equality:

â
k=0

¥

dk
2 � à

a

b

f HtL2 â t �; dk � à
a

b

ΨkHtL f HtL â t í k Î N í à
a

b

ΨmHtL ΨnHtL â t � ∆m,n

The corresponding system 8ΨkHxL< is called the complete system. 

The best-known examples of orthogonal systems are the classical orthogonal polynomials and the trigonometric

system including cosHk xL and sinHk xL.
Generalized Fourier series through classical orthogonal polynomials

f HxL « â
k=0

¥

dk ΨkHxL �; dk � à
a

b

ΨkHtL f HtL â t í k Î N í à
a

b

ΨmHtL ΨnHtL â t � ∆m,n

For  example,  any  sufficiently  smooth  function  f HxL  can  be  expanded  in  the  Hermite  orthogonal  system8HnHxL<n=0,1,¼  or in other orthogonal systems with corresponding weight factors as a generalized Fourier series,

with its sum converging to f HxL almost everywhere in corresponding intervals of variable x. The following repre-

sents this type of Fourier expansion through all classical orthogonal systems of polynomials.

f HxL � â
n=0

¥

dn ΨnHxL �; dn � à
-¥

¥

ΨnHtL f HtL â t í ΨnHxL �
1

Π 2n n!

 ã-
x2

2  HnHxL í x Î R

f HxL � â
n=0

¥

dn ΨnHxL �; dn � à
0

¥

ΨnHtL f HtL â t í ΨnHxL � ã-
x

2 LnHxL í x > 0

f HxL � â
n=0

¥

dn ΨnHxL �; dn � à
0

¥

ΨnHtL f HtL â t í ΨnHxL �
n!

GHn + Λ + 1L  xΛ�2 ã-
x

2 Ln
ΛHxL í x > 0

f HxL � â
n=0

¥

dn ΨnHxL �; dn � à
-1

1

ΨnHtL f HtL â t í ΨnHxL �
1

2
H2 n + 1L PnHxL í -1 < x < 1
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f HxL � â
n=0

¥

dn ΨnHxL �; dn � à
-1

1

ΨnHtL f HtL â t í ΨnHxL �

2

Π

I 2 - 1N ∆n + 1
 I1 - x2M-

1

4 TnHxL í -1 < x < 1

f HxL � â
n=0

¥

dn ΨnHxL �; dn � à
-1

1

ΨnHtL f HtL â t í ΨnHxL �
2

Π
1 - x24

UnHxL í -1 < x < 1

f HxL � â
n=0

¥

dn ΨnHxL �; dn � à
-1

1

ΨnHtL f HtL â t í ΨnHxL �
2Λ-

1

2 n! n + Λ GHΛL
Π GHn + 2 ΛL  I1 - x2M 2 Λ-1

4 Cn
ΛHxL í -1 < x < 1

f HxL � â
n=0

¥

dn ΨnHxL �; dn � à
-1

1

ΨnHtL f HtL â t í

ΨnHxL �
2-

a+b+1

2 n! a + b + 2 n + 1 GHa + b + n + 1L
GHa + n + 1L GHb + n + 1L H1 - xLa�2 Hx + 1Lb�2 Pn

Ha,bLHxL í -1 < x < 1

Exponential Fourier series

f HxL « â
k=-¥

¥

ck ãä k x �; ck �
1

2 Π
 à

-Π

Π

f HtL ã-ä k t  â t

This exponential Fourier series expansion can be transformed into a trigonometric Fourier series by using the Euler

formula ãä z � cosHzL + ä sinHzL.
Following is an example of the exponential Fourier series for the simple function f HxL � x �; -Π < x < Π.

x � â
k=-¥

¥

ck ãä k x �; ck �
0 k � 0

ä Hk Π cosHk ΠL-sinHk ΠLL
k2 Π

True
í -Π < x < Π

Outside the interval -Π < x < Π, the sum forms a periodic function and the following expansion holds for all real

x:

x � 2 Π
x + Π

2 Π
+

-Π x-Π

2 Π
Î Z

0 True
+ â

k=-¥

¥

ck ãä k x �; ck �
0 k � 0

ä Hk Π cosHk ΠL-sinHk ΠLL
k2 Π

True
í x Î R

Trigonometric Fourier series

f HxL «
a0

2
+ â

k=1

¥ Hak  cosHk xL + bk  sinHk xLL �; ak �
1

Π
 à

-Π

Π

f HtL cosHk tL â t í bk �
1

Π
 à

-Π

Π

f HtL sinHk tL â t

This series expansion into a trigonometric system first appeared in an 1807 paper of J. Fourier, who used a similar

expansion on the interval H0, 2 ΠL. However, L. Euler had discovered similar formulas for Fourier coefficients in

1777.
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An  arbitrary  interval  Ha, bL  can  be  transformed  into  the  interval  H-Π, ΠL  by  changing  the  variable

x ® xHb - aL � H2 ΠL + Ha + bL � 2. This allows you to write the following Fourier series expansion of the arbitrary

function f HxL on an arbitrary interval Ha, bL:
f HxL «

a0

2
+ â

k=1

¥

ak  cos k x -
a + b

2
 

2 Π

b - a
+ bk  sin k x -

a + b

2
 

2 Π

b - a
�;

ak �
2

b - a
 à

a

b

f HtL cos k t -
a + b

2
 2 

Π

b - a
 â t í bk �

2

b - a
 à

a

b

f HtL sin k t -
a + b

2
 2 

Π

b - a
 â t.

In the preceding formulas the coefficients should vanish at infinity ak ® 0, bk ® 0 as k ® ¥.

In the internal points x, a < x < b, where the piecewise differentiable function f HxL is continuous, the preceding

sum of the Fourier series is equal to f HxL and you can change the symbol « to �.

At the points of discontinuity, this Fourier sum is equal to 1
2

 H f Hx + 0L + f Hx - 0LL. 
Outside the interval Ha, bL, the Fourier sum is a periodic function with period b - a, but the behavior of this sum is

not necessarily related to the actual behavior of the function f HxL outside the interval of expansion Ha, bL.
For example, let f HxL = x and Ha, bL = H-1, 1L. Then ak = 0, bk = 2 sinHk ΠL

k2 Π2
- 2 cosHk ΠL

k Π
, k Î N, and:

f HxL « â
k=1

¥ 2 sinHk ΠL
k2 Π2

-
2 cosHk ΠL

k Π
sinHk Π xL =

ä

Π
 logIã-Π ä xM

Inspection shows that the Fourier sum ä
Π

 logIã-Π ä xM has period 2 and coincides with x on the interval H-1, 1L. But at

the endpoint x = 1 the Fourier sum is equal to 0, since you are evaluating Úk=1
¥ J 2 sinHk ΠL

k2 Π2
- 2 cosHk ΠL

k Π
N sinHk ΠL with

sinHk ΠL = 0. This result coincides with 1
2

 K lim
x®1-0

 ä
Π

 logIã-Π ä xM + lim
x®1+0

 ä
Π

 logIã-Π ä xMO = 1
2

 H1 - 1L. 
Asymptotic series expansions

Expansions at z � ¥
�

f HzL µ gHzL â
k=0

¥

ck z-k �; c0 ¹ 0 ì H z¤ ® ¥L �
f HzL - gHzL Úk=0

n ck z-k

gHzL z-n-1
<  cn+1¤ �;  z¤ > R

This asymptotic series expansion of the function f HzL at ¥�  includes the main term c0 gHzL �; c0 ¹ 0 and other terms

of the form gHzL ck z-k. The corresponding formal asymptotic series Úk=0
¥ ck z-k  is, by definition, formed in such a

way  that  the  following  inequality  holds  for  all  n Î N  and  sufficiently  large   z¤:  £ f HzL-gHzL Úk=0
n ck z-k

gHzL z-n-1
§ <  cn+1¤.  This

asymptotic series can be a divergent or convergent series. If this series converges, it coincides with the Taylor

power series expansion at infinity.

For  example,  the  confluent  hypergeometric  function  UHa, b, zL  has  the  following  asymptotic  series  expansion

through the divergent series 2F0:
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UHa, b, zL µ z-a
2F0 a, a - b + 1; ; -

1

z
�; H z¤ ® ¥L

The relation takes place because the following inequality holds for each n Î N and sufficiently large  z¤:
UHa, b, zL - z-a Úk=0

n H-1Lk HaLk Ha-b+1Lk z-k

k!

z-a-n-1
< const �;  z¤ > R

The function EiHzL has a rather interesting asymptotic expansion at ¥�  through the following divergent series: 

EiHzL µ
ãz

z
â
k=0

¥ k !

zk
+ Π ä sgnHImHzLL �; H z¤ ® ¥L

The next example includes a convergent series in an asymptotic expansion. So, you can use the sign � instead of µ:

sin-1HzL �
z

2 -z2

 logI-4 z2M - â
k=1

¥ J 1

2
N
k

z-2 k

k k !
�;  z¤ > 1

In the particular case n � 0, the first generic formula for asymptotic expansion can be rewritten in the following

form:

f HzL µ gHzL c0 + O
1

z
�; c0 ¹ 0 ì H z¤ ® ¥L � H z H f HzL - c0 gHzLL¤ < c1 �;  z¤ > RL

Expansions at z � z0

f HzL µ gHzL â
k=0

¥

ck Hz - z0Lk �; c0 ¹ 0 ì Hz ® z0L �
f HzL - gHzL Úk=0

n ck Hz - z0Lk

gHzL Hz - z0Ln+1
<  cn+1¤ �;  z - z0¤ < Ε

This asymptotic series expansion of the function f HzL at z � z0  includes the main term c0 gHzL �; c0 ¹ 0 and other

terms gHzL ck Hz - z0Lk. The corresponding formal asymptotic series Úk=0
¥ ck Hz - z0Lk by definition is formed in such a

way that the following inequality holds for all n Î N  and sufficiently small  z - z0¤: f HzL-gHzL Úk=0
n ck Iz-z0Mk

gHzL Iz-z0Mn+1
<  cn+1¤.

This asymptotic series can be a divergent or convergent series. If this series converges, it coincides with the Taylor

power series expansion at the point z � z0.

For example, the functions sec-1HzL and sin-1HzL have the following asymptotic expansions near the points z � 0

and z � 1 through convergent series. So, you can use the sign � instead of µ here:

sec-1HzL �
Π

2
+

1

2
z -

1

z2
log -

4

z2
- â

k=1

¥ J 1

2
N
k

z2 k

k k !
�;  z¤ < 1

sin-1HzL �
Π

2
- 2 1 - z â

k=0

¥ J 1

2
N
k

H1 - zLk

2k H2 k + 1L k !
�;  z - 1¤ < 2
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In the particular case n � 0, the first generic formula for asymptotic expansion can be rewritten in the following

form:

H f HzL µ gHzL Hc0 + OHz - z0LL �; c0 ¹ 0 ì Hz ® z0LL �
f HzL - c0 gHzL

z - z0

< c1 �;  z - z0¤ < Ε

Residue representations

f  HzL � â
k=0

¥

ressHgHsLL Ha k + bL
For many analytic functions f HzL, you can establish so-called residue representations through infinite 
sums of residues of another analytic function gHzL in the points s � a k + b. The residue of the analytic 
function gHzL in the pole of order m can be calculated by the formula:

reszHgHzLL Hz0L �
1

Hm - 1L !
 lim
z®z0

¶m-1 HgHzL Hz - z0LmL
¶zm-1

�; m Î N+

If the function gHzL can be represented as a quotient gHzL � ΦHzL
ΗHzL , where the functions ΦHzL and ΗHzL are 

analytic at the point z � z0 and z0 is the simple root of the equation ΗHzL � 0, then the following 
formula holds:

res
ΦHzL
ΗHzL , 8z, z0< �

ΦHzL
Η¢Hz0L �; ΦHz0L ¹ 0 ì ΗHz0L � 0 ì Η¢Hz0L ¹ 0

Very often, residue representations appear from the theory of the Meijer G function. The majority of 
functions of the hypergeometric type can be equivalently defined as corresponding to infinite sums of 
residues from products of ratios of gamma functions GHΑk s + ΒkL on power function zs.  

For example, the following residue representation formula for a logarithm function takes place:

logHz + 1L � â
j=1

¥

ress

GH-sL2 z-s

GH1 - sL  GHs + 1L  H- jL �;  z¤ < 1

Integral representations

Fourier integral representations

f HxL « à
0

¥HaHtL cosHt xL + bHtL sinHt xLL â t �; aHtL �
1

Π
 à

-¥

¥

f HΤL cosHt ΤL â Τ í bHtL �
1

Π
 à

-¥

¥

f HΤL sinHt ΤL â Τ

The Fourier integral is the continuous analogue of a Fourier series. This formulas can be derived from the Fourier

series expansion of the function f HxL on interval H-l, lL as l ® ¥.

The substitution of aHtL and bHtL into the integral gives the following Fourier integral formulas:

f HxL «
1

Π
 à

0

¥à
-¥

¥

f HΤL cosHt Hx - ΤLL â Τ â t
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f HxL «
1

Π
 lim
R®¥

à
-¥

¥ f HΤL sinHR Hx - ΤLL
x - Τ

 â Τ.

The  first  definition  can  be  rewritten  in  exponential  form,  leading  to  exponential  direct  and  inverse  Fourier

transforms:

f  HxL «
1

2 Π
 à
-¥

¥

FΤ@ f HΤLD HtL ã-ä t x â t �; FΤ@ f HΤLD HtL �
1

2 Π
 à
-¥

¥

f HΤL ãä t Τ â Τ.

If the function f HxL is absolutely integrable on the real axis, you have the following equality:

1

2
 H f Hx + 0L + f Hx - 0LL � lim

R®¥
 

1

2 Π
 à
-R

R

FΤ@ f HΤLD HtL ã-ä t x â t.

Product representations

f HzL � ä
k=0

¥

PkH f HzLL
log

z

z0

k! �; P0H f HzLL � f HzL í PkH f HzLL � exp z
¶ logHPk-1H f HzLLL

¶z

Transformations

Transformations and argument simplifications

Argument involving related functions (compositions)

f HgHzLL � â
k=0

¥

ck zk �; ck � â
j=0

¥

a j b0
j

p j,k í p j,0 � 1 í p j,k �
1

b0 k
 â
m=1

k H j m + m - kL bm p j,k-m í k Î N+ í

f HΖL � â
k=0

¥

ak Ζk �;  Ζ¤ < r1 í gHzL � â
k=0

¥

bk zk �;  z¤ < r2 ì b0 ¹ 0 í  gHzL¤ < r1

This formula shows how to generate the series expansion of a general composition f HgHzLL at the point z � 0, using

the known series expansions for each of the functions f HzL and gHzL at z � 0. 
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f HgHzLL � â
k=0

¥

ck zk �;

ck � â
i1+2 i2+º+k ik=k

Hi1 + i2 + º + ik; i1, i2, ¼, ikL ai1+i2+¼+ik b1
i1 b2

i2 ¼ bk
ik í c0 � a0 í c1 � a1 b1 í c2 � a1 b2 + a2 b1

2 í

c3 � a1 b3 + 2 a2 b1 b2 + a3 b1
3 í c4 � a1 b4 + 2 a2 b1 b3 + a2 b2

2 + 3 a3 b1
3 b2 + a4 b1

4 í ¼ í

f HΖL � â
k=0

¥

ak Ζk �;  Ζ¤ < r1 í gHzL � â
k=0

¥

bk zk �;  z¤ < r2 ì b0 � 0 í  gHzL¤ < r1

This formula shows how to generate series expansion of the general composition f HgHzLL at the point z � 0, using

known series expansions for each function f HzL and gHzL at zero. 

Products, sums, and powers of the direct function

Products of the direct function

f HzL gHzL = â
k=0

¥ â
n=0

k

an bk-n zk �; f HzL � â
k=0

¥

ak zk �;  z¤ < r1 í gHzL � â
k=0

¥

bk zk �;  z¤ < r2 í  z¤ < r � minHr1, r2L
This formula shows how to multiply power series of two functions f HzL and gHzL at the point z � 0. 

f HzL gHzL = â
k=0

n â
j=0

k

a j bk- j zk + zn+1 â
k=0

¥ â
j=0

n

a j+k+1 bn- j zk �; f HzL � â
k=0

¥

ak zk �;  z¤ < r í gHzL � â
k=0

n

bk zk �;  z¤ < r

This formula shows how to multiply power series of two functions f HzL and gHzL at the point z � 0. 

f HzL gHzL hHzL = â
k=0

¥ â
n=0

k â
i=0

n

ak-n ci bn-i zk �;

f HzL � â
k=0

¥

ak zk �;  z¤ < r1 í gHzL � â
k=0

¥

bk zk �;  z¤ < r2 í hHzL � â
k=0

¥

ck zk �;  z¤ < r3 í  z¤ < r � minHr1, r2, r3L
This formula shows how to multiply power series of three functions f HzL, gHzL and hHzL at the point z � 0. 

Ratios of the direct function

1

gHzL �
1

b0

 â
k=0

¥ Hk + 1L â
r=0

k H-1Lr

r + 1

k
r

 pr,k zk �;

gHzL � â
k=0

¥

bk zk í b0 ¹ 0 í p j,0 � 1 í p j,k �
1

b0 k
 â
m=1

k H j m + m - kL bm p j,k-m í k Î N+

This formula represents the reciprocal of a power series for function gHzL at the point z � 0. 
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f HzL
gHzL � â

k=0

¥

qk zk �; ak � â
j=0

k

b j qk- j í f HzL � â
k=0

¥

ak zk í gHzL � â
k=0

¥

bk zk

This formula represents the ratio of a power series for functions f HzL and gHzL at the point z � 0. 

f HzL
gHzL �

1

b0

 â
k=0

¥ â
j=0

k H j + 1L ak- j â
r=0

j H-1Lr

r + 1

j

r
pr, j zk �;

f HzL � â
k=0

¥

ak zk í gHzL � â
k=0

¥

bk zk í b0 ¹ 0 í p j,0 � 1 í p j,k �
1

b0 k
 â
m=1

k H j m + m - kL bm p j,k-m í k Î N+

This formula represents the ratio of a power series for functions f HzL and gHzL at the point z � 0. 

f HzL gHzL
hHzL �

1

c0

 â
k=0

¥ â
j=0

k H j + 1L dk- j â
r=0

j H-1Lr j

r

r + 1
 pr, j zk �;

f HzL � â
k=0

¥

ak zk �;  z¤ < r1 í gHzL � â
k=0

¥

bk zk �;  z¤ < r3 í hHzL � â
k=0

¥

ck zk í c0 ¹ 0 �;  z¤ < r2 í

 z¤ < r � minHr1, r2, r3L í dk � â
n=0

k

an bk-n í p j,0 � 1 í p j,k �
1

c0 k
 â
m=1

k H j m - k + mL cm p j,k-m í k Î N+

This formula represents the ratio of a power series for functions f HzL, gHzL and hHzL, at the point z � 0. 

Sums of the direct function

f HzL ± gHzL � â
k=0

¥ Hak ± bkL zk �; f HzL � â
k=0

¥

ak zk �;  z¤ < r1 í gHzL � â
k=0

¥

bk zk �;  z¤ < r2 í  z¤ < r � minHr1, r2L
This formula represents the summation property for the power series of the functions f HzL and gHzL at the point

z � 0. 

Powers of the direct function

f HzL2 = â
k=0

¥ â
n=0

k

an ak-n zk �; f HzL � â
k=0

¥

ak zk �;  z¤ < r

This formula represents the series squared property of the functions f HzL at the point z � 0. 

f HzLn � â
k=0

¥

pk zk �; f HzL � â
k=0

¥

ak zk �;  z¤ < r1 í p0 � a0
n í a0 ¹ 0 í pk �

1

a0 k
 â
j=1

k Hn j + j - kL a j pk- j í k Î N+ í  z¤ < r1

This formula represents the nth integer power of the series for the functions f HzL at the point z � 0. 
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f HzLΑ � ã
2 ä Α Π

1

2
-

argJa0N
2 Π

-
1

2 Π
 arg

f HzL
a0 a0

Α Α â
k=0

¥
k - Α

k
â
j=0

k H-1L j

Α - j
 

k
j

 p j,k zk �;

f HzL � â
k=0

¥

ak zk í a0 ¹ 0 í p j,0 � 1 í p j,k �
1

a0 k
 â
m=1

k H j m + m - kL am p j,k-m í k Î N+

This formula represents the arbitrary Αth power of the series for the functions f HzL at the point z � 0. 

IzΒ f HzLMΑ
� ã

2 ä Α Π
1

2
-

argJa0N
2 Π

-
ImI Β logHzLM

2 Π
-

1

2 Π
 arg

f HzL
a0 a0

Α Α zΑ Β â
k=0

¥
k - Α

k
â
j=0

k H-1L j

Α - j
 

k
j

 p j,k zk �;

f HzL � â
k=0

¥

ak zk í a0 ¹ 0 í p j,0 � 1 í p j,k �
1

a0 k
 â
m=1

k H j m + m - kL am p j,k-m í k Î N+

This formula represents the generic arbitrary power of the series for the functions f HzL at the point z � 0. 

Related transformations

Inversion

f H-1LHzL � â
k=0

¥

ck zk �;

c0 � 0 í c1 �
1

a1

í ck � -
1

a1

 â
j=2

k+1

a j â
i1=0

j â
i2=0

j

¼ â
ik=0

j

∆
j,Úp=1

k ip
∆

k,Úq=1
k q iq

Hi1 + i2 + ¼ + ik; i1, i2, ¼, ikL ä
p=1

k-1

cp
ip í

c2 � -
a2

a1
3

í c3 �
2 a2

2 - a1 a3

a1
5

í c4 � -
5 a2

3 - 5 a1 a3 a2 + a1
2 a4

a1
7

í ¼ í

f HΖL � â
k=0

¥

ak Ζk í a0 � 0 í a1 ¹ 0 í f I f H-1LHzLM � z

This formula represents the series expansion of the inverse function f H-1LHzL through the known power series of the

direct function f HzL at the point z � 0. 

f H-1LHzL � â
k=1

¥

ck zk �; vk � â
n2+2 n3+º+Hk-1L nk=k-1

n1 !

k a1
k

 Hk + n1 + n2 + º + nk - 1; k - 1, n1, n2, ¼, nkL -
a2

a1

n2

 º -
ak

a1

nk í

f HΖL � â
k=0

¥

ak Ζk í a0 � 0 í a1 ¹ 0 í f I f H-1LHzLM � z

This formula represents the series expansion of the inverse function f H-1LHzL through the known power series of

direct function f HzL at the point z � 0. 

Re-expansions in different points
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f HzL � f Hz0L + â
k=1

¥ â
j=0

¥

a j+k
j + k

k
z0

j Hz - z0Lk �; f HzL � â
k=0

¥

ak zk

This formula shows how to generate the series expansion of the function f HzL at the point z � z0, if this function is

presented through the power series at the point z � 0. 

f HzL � â
k=0

¥ â
j=0

¥

a j+k
j + k

k
H-z0L j zk �; f HzL � â

k=0

¥

ak Hz - z0Lk

This formula shows how to generate the series expansion of the function f HzL at the point z � 0, if this function is

presented through the power series at the point z � z0. 

f HzL � â
j=0

¥ â
k=0

¥

a j+k
j + k

j
Hz1 - z0Lk Hz - z1L j �; f HzL � â

k=0

¥

ak Hz - z0Lk

This formula shows how to generate the series expansion of the function f HzL at the point z � z1, if this function is

presented through the power series at the point z � z0. 

Expansions through classical orthogonal polynomials

f HzL � f Hz0L + â
k=1

¥ â
j=0

¥

a j+k
j + k

k
z0

j Hz - z0Lk �; f HzL � â
k=0

¥

ak zk

This formula shows how to generate the series expansion of the function f HzL at the point z � z0, if this function is

presented through the power series at the point z � 0. 

f HzL � â
k=0

¥ â
j=0

¥

a j+k
j + k

k
H-z0L j zk �; f HzL � â

k=0

¥

ak Hz - z0Lk

This formula shows how to generate the series expansion of the function f HzL at the point z � 0, if this function is

presented through the power series at the point z � z0. 

f HzL � â
j=0

¥ â
k=0

¥

a j+k
j + k

j
Hz1 - z0Lk Hz - z1L j �; f HzL � â

k=0

¥

ak Hz - z0Lk

This formula shows how to generate the series expansion of the function f HzL at the point z � z1, if this function is

presented through the power series at the point z � z0. 

Determinants

1 a1 a1
2 ¼ a1

n-1

1 a2 a2
2 ¼ a2

n-1

¼ ¼ ¼ ¼ ¼

1 an an
2 ¼ an

n-1

� ä
j=1

n ä
i= j+1

n Iai - a jM

This determinant is called the Vandermonde determinant.
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Complex characteristics

Real part

ReH f Hx + ä yLL �
f Hx + ä yL + f Hx - ä yL

2

ReH f Hx + ä yLL �
1

2
f x - x -

y2

x2
+ f x + x -

y2

x2

Imaginary part

ImH f Hx + ä yLL �
f Hx + ä yL - f Hx - ä yL

2 ä

ImH f Hx + ä yLL �
x

2 y
 -

y2

x2
f x - x -

y2

x2
- f x + x -

y2

x2

Absolute value

  f Hx + ä yL¤ � f Hx + ä yL f Hx - ä yL

  f Hx + ä yL¤ � f x - x -
y2

x2
f x + x -

y2

x2

Argument

argH f Hx + ä yLL � tan-1
f Hx + ä yL + f Hx - ä yL

2
,

f Hx + ä yL - f Hx - ä yL
2 ä

argH f Hx + ä yLL � tan-1
1

2
f x - x -

y2

x2
+ f x + x -

y2

x2
,

x

2 y
 -

y2

x2
f x - x -

y2

x2
- f x + x -

y2

x2

Conjugate value

f Hx + ä yL � f Hx - ä yL
f HzL � f Hz�L
f Hx + ä yL �

1

2
f -

y2

x2
x + x + f x - x -

y2

x2
-

ä x

2 y
 -

y2

x2
f x - x -

y2

x2
- f x + x -

y2

x2
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Differentiation

Low-order differentiation

Derivatives of the first order

f ¢HzL � lim
Ε®0

f Hz + ΕL - f HzL
Ε

This limit defines the derivative of a function f  at the point z, if it exists. 

¶Hc f HzLL
¶z

� c
¶ f HzL

¶z

This formula reflects the property that a constant factor can be pulled out of the differentiation.

¶H f HzL ± gHzLL
¶z

�
¶ f HzL

¶z
±

¶gHzL
¶z

This formula reflects the property that the derivative of a sum (and difference) is equal to the sum (and difference)

of the derivatives. 

¶H f HzL gHzLL
¶z

�
¶ f HzL

¶z
gHzL + f HzL 

¶gHzL
¶z

The product rule for differentiation  shows that the derivative of a product is equal to the derivative of the first

function multiplied by the second function plus the derivative of the second function multiplied by the first function.

¶H f HzL gHzL hHzLL
¶z

�
¶hHzL

¶z
f HzL gHzL +

¶ f HzL
¶z

hHzL gHzL +
¶gHzL

¶z
f HzL hHzL

The product rule for differentiation shows how to evaluate the derivative of the product of three functions.

¶IÛk=1
n fkHzLM

¶z
� â

j=1

n 1

f jHzL  
¶ f jHzL

¶z
ä
k=1

n

fkHzL
The product rule for differentiation shows how to evaluate the derivative of the product of n functions.

¶

¶z
 
f HzL
gHzL �

1

gHzL2
 gHzL ¶ f HzL

¶z
- f HzL ¶gHzL

¶z

The quotient rule for differentiation shows that the derivative of the ratio is equal to the derivative of the numerator

multiplied by the denominator minus the derivative of the denominator multiplied by the numerator, divided by the

square of the denominator.

¶
f HzL hHzL

gHzL
¶z

�
gHzL hHzL f ¢HzL - f HzL hHzL g¢HzL + f HzL gHzL h¢HzL

gHzL2
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The quotient rule for differentiation  has been generalized to the case when the numerator is the product of two

functions.

¶
f HzL

gHzL hHzL
¶z

�
gHzL hHzL f ¢HzL - f HzL hHzL g¢HzL - f HzL gHzL h¢HzL

gHzL2 hHzL2

The quotient rule for differentiation is generalized to the case when the denominator is the product of two functions.

¶

¶z
 â
k=0

¥

akHzL � â
k=0

¥ ¶akHzL
¶z

This formula shows that the derivative of the sum is equal to the sum of the derivatives. For an infinite sum it is

true under some restrictions on akHzL, which ensure the convergence of the series.

¶ f HzL
¶z

� â
k=1

¥

ak k zk-1 �;  z¤ < r í f HzL � â
k=0

¥

ak zk �;  z¤ < r

This formula shows that the derivative of a power series is equal to the corresponding sum of the derivatives. It is

true inside the corresponding circle of convergence with radius r.

¶ f HgHzLL
¶z

� f ¢HgHzLL g¢HzL
This chain rule for differentiation shows that the derivative of composition f HgHzLL is equal to the derivative of the

outer function f  in the point gHzL, multiplied by the derivative of the inner function g.

¶ f HgHzL, hHzLL
¶z

� g¢HzL f H1,0LHgHzL, hHzLL + h¢HzL f H0,1LHgHzL, hHzLL
This chain rule for partial differentiation  generalizes the previous chain rule for differentiation in the case of a

function with two variables f Hu, vL �; u � gHzL ì v � hHzL.
¶ f Hg1HzL, g2HzL, ¼, gnHzLL

¶z
� â

k=1

n

gk
¢HzL f H0,¼,1,¼,0LHg1HzL, ¼, gkHzL, ¼, gnHzLL

This chain rule for partial differentiation generalizes the chain rule for differentiation in the case of a function with

several variables f Hu1, u2, ¼, unL �; uk � gkHzL ì 1 £ k £ n.

¶ f H-1LHzL
¶z

�
1

f ¢I f H-1LHzLM
This formula shows that the derivative of the inverse function f H-1LHzL is equal to the reciprocal of the derivative of

the direct function f  in the point f H-1LHzL.
¶

¶ f HzL
¶z

¶z
�

¶2 f HzL
¶z2
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This formula shows that the composition of the first derivatives is equal to the derivative of the second order.

¶

¶z
 à f HzL â z � f HzL

This formula shows that the derivative of an indefinite integral produces the original function (the derivative is the

inverse operation to the indefinite integration).

¶

¶z
 à

a

z

f HtL â t � f HzL
This formula shows that the derivative of a definite integral with respect to the upper limit produces the original

function.

¶

¶z
 à

z

b

f HtL â t � - f HzL
This formula shows that the derivative of a definite integral with respect to the low limit gives the original function

with a negative sign.

¶

¶z
 à

a

b

f Ht, zL â t � à
a

b

f H0,1LHt, zL â t

This formula shows that the order of differentiation and definite integration can be changed if the limits of the

integral do not depend on the variable of differentiation. 

¶

¶z
 à

gHzL
hHzL

f Ht, zL â t � à
gHzL

hHzL
f H0,1LHt, zL â t - f HgHzL, zL g¢HzL + f HhHzL, zL h¢HzL

This formula reflects the general rule of differentiating an integral when its limits and its integrand depend on the

variable of differentiation. 

Derivatives of the second order

¶2 f HzL
¶z2

� lim
Ε®0

f HzL - 2 f Hz + ΕL + f Hz + 2 ΕL
Ε2

This limit defines the second derivative of a function f  at the point z, if it exists.

¶2 f HgHzLL
¶z2

� f ¢¢HgHzLL g¢HzL2 + f ¢HgHzLL g¢¢HzL
This formula shows how to evaluate the second derivative of a general composition f HgHzLL.

Symbolic differentiation 

Definition

f HnLHzL � lim
Ε®0

1

Εn
 â
k=0

n H-1Ln-k n

k
f Hz + k ΕL
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This limit defines the nth-order derivative of a function f  at the point z, if it exists. 

Converting to finite differences and back

¶n f HzL
¶zn

= â
k=0

¥ h-n

Hn + 1Lk

 Sk+n
HnL Dz,h

n+k  f HzL �; Dz,h
k  f HzL � Dz,h

k-1HDz,h f HzLL í Dz,h f HzL � f Hz + hL - f HzL

Dz,h
n  f HzL = â

k=0

¥ h j+n

Hn + 1Lk

Sk+n
HnL ¶k+n f HzL

¶zk+n
�; Dz,h

k  f HzL � Dz,h
k-1HDz,h f HzLL í Dz,h f HzL � f Hz + hL - f HzL

Products

¶8z,n< H f HzL gHzLL � â
k=0

n n

k

¶k f HzL
¶zk

¶n-k gHzL
¶zn-k

This rule is called the binomial differentiation rule for the nth-order derivative.

¶n IÛk=1
3 fkHzLM
¶zn

� â
n1=0

n â
n2=0

n â
n3=0

n

∆n,n1+n2+n3
Hn1 + n2 + n3; n1, n2, n3L ä

k=1

3 ¶nk fkHzL
¶znk

This rule is called the multinomial differentiation rule for the nth-order derivative.

¶n

¶zn
 ä
k=1

m

fkHzL � â
n1=0

n â
n2=0

n

¼ â
nm=0

n

∆n,Úk=1
m nk

Hn1 + n2 + ¼ + nm; n1, n2, ¼, nmL ä
k=1

m ¶nk fkHzL
¶znk

This rule is called the multinomial differentiation rule for the nth-order derivative.

Ratios

¶n f HzL
gHzL

¶zn
� n! â

k=0

n ¶n-k f HzL
¶zn-k

â
j=0

k H-1L j Hk + 1L gHzL- j-1

H j + 1L ! Hn - kL ! Hk - jL !
 
¶k gHzL j

¶zk
�; n Î N

This formula shows how to evaluate an nth-order derivative for the quotient of two functions.

¶n f HzL
gHzL

¶zn
�

¶n f HzL
¶zn

gHzL + n! â
k=1

n ¶n-k f HzL
¶zn-k

â
j=1

k H-1L j Hk + 1L
H j + 1L ! Hn - kL ! Hk - jL !

g HzL- j-1
¶k gHzL j

¶zk
�; n Î N

This formula shows how to evaluate an nth-order derivative for the quotient of two functions.

¶n f HzL
gHzL

¶zn
�

¶n f HzL
¶zn

gHzL + n! â
m=1

n ¶n-m f HzL
¶zn-m

â
q=1

m H-1Lq Hm + 1L
Hq + 1L ! Hn - mL ! Hm - qL !

 gHzL-q-1

â
kH1L=0

m â
kH2L=0

m-kH1L
¼ â

kHq-1L=0

m-Új=1
q-2kH jL ä

i=1

q-1
m - Új=1

i-1 kH jL
kHpL ä

i=1

q-1 ¶kHiL gHzL
¶zkHiL

¶m-Új=1
q-1kH jL gHzL

¶zm-Új=1
q-1kH jL �; n Î N

This formula shows how to evaluate an nth-order derivative for the quotient of two functions.
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¶n f HzL
gHzL

¶zn
�

¶n f HzL
¶zn

gHzL + n! â
k=1

n ¶n-k f HzL
¶zn-k

â
m=1

k H-1Lm Hk + 1L
Hm + 1L ! Hn - kL ! Hk - mL !

gHzL-m-1 â
n1=0

k â
n2=0

k

¼ â
nm=0

k

∆k,Úk=1
m nk

Hn1 + n2 + ¼ + nm; n1, n2, ¼, nmL ä
k=1

m ¶nk gHzL
¶znk

�; n Î N

This formula shows how to evaluate an nth-order derivative for the quotient of two functions.

Power

¶n f HzLa

¶zn
� a

n - a

n â
k=0

n H-1Lk

a - k
 

n

k
f HzLa-k

¶n f HzLk

¶zn
�; n Î N

This formula shows how to evaluate an nth-order derivative of the power f HzLa.

¶n f HzLa

¶zn
� ∆n f HzLa + a

n - a

n â
m=1

n H-1Lm

a - m
 

n

m
f HzLa-m

¶n f HzLm

¶zn
�; n Î N

This formula shows how to evaluate an nth-order derivative of the power f HzLa.

¶n f HzLa

¶zn
� f HzLa ∆n +

a
n - a

n â
m=1

n H-1Lm

a - m

n

m
 f HzLa-m â

kH1L=0

n â
kH2L=0

n-kH1L
¼ â

kHm-1L=0

n-Új=1
m-2kH jL ä

p=1

m-1
n - Új=1

p-1
kH jL

kHpL ä
i=1

m-1 ¶kHiL f HzL
¶zkHiL

¶n-Új=1
m-1kH jL f HzL

¶zn-Új=1
m-1kH jL �; n Î N

This formula shows how to evaluate an nth-order derivative of the power f HzLa.

¶n f HzLa

¶zn
� ∆n f HzLa + a

n - a

n â
m=1

n H-1Lm

a - m
 

n

m
f HzLa-m â

n1=0

n â
n2=0

n

¼ â
nm=0

n

∆n,Úk=1
m nk

Hn1 + n2 + ¼ + nm; n1, n2, ¼, nmL ä
k=1

m ¶nk f HzL
¶znk

�;
n Î N

This formula shows how to evaluate an nth-order derivative of the power f HzLa.

Positive integer powers

¶n f HzL2

¶zn
� â

k=0

n n

k
f Hn-kLHzL f HkLHzL �; n Î N

This formula shows how to evaluate an nth-order derivative of the square f HzL2.

¶n f HzL3

¶zn
� â

k1=0

n â
k2=0

n-k1 n

k1

n - k1

k2
f Hk1LHzL f Hn-k1-k2LHzL f Hk2LHzL �; n Î N

This formula shows how to evaluate an nth-order derivative of the square f HzL3.
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¶n f HzL3

¶zn
� â

k1=0

n â
k2=0

n â
k3=0

n

∆n,k1+k2+k3
Hk1 + k2 + k3; k1, k2, k3L ä

i=1

3 ¶ki f HzL
¶zki

�; n Î N

This formula shows how to evaluate an nth-order derivative of the cube f HzL3.

¶n f HzL4

¶zn
� â

k1=0

n â
k2=0

n-k1 â
k3=0

n-k1-k2 n

k1

n - k1

k2

n - k1 - k2

k3
f Hk1LHzL f Hk2LHzL f In-k1-k2-k3MHzL f Ik3MHzL �; n Î N

This formula shows how to evaluate an nth-order derivative of the fourth power f HzL4.

¶n f HzL4

¶zn
� â

k1=0

n â
k2=0

n â
k3=0

n â
k4=0

n

∆n,k1+k2+k3+k4
Hk1 + k2 + k3 + k4; k1, k2, k3, k4L ä

i=1

4 ¶ki f HzL
¶zki

�; n Î N

This formula shows how to evaluate an nth-order derivative of the fourth power f HzL4.

¶n f HzLm

¶zn
� â

kH1L=0

n â
kH2L=0

n-kH1L
¼ â

kHm-1L=0

n-Új=1
m-2kH jL ä

p=1

m-1
n - Új=1

p-1
kH jL

kHpL ä
i=1

m-1 ¶kHiL f HzL
¶zkHiL

¶n-Új=1
m-1kH jL f HzL

¶zn-Új=1
m-1kH jL �; m Î N+ ì n Î N

This formula shows how to evaluate an nth-order derivative of the general integer power f HzLm �; m Î N+.

¶n f HzLm

¶zn
� â

n1=0

n â
n2=0

n

¼ â
nm=0

n

∆n,Úk=1
m nk

Hn1 + n2 + ¼ + nm; n1, n2, ¼, nmL ä
k=1

m ¶nk f HzL
¶znk

�; m Î N+ ì n Î N

This formula shows how to evaluate an nth-order derivative of the general integer power f HzLm �; m Î N+.

Negative integer powers

¶n 1

f HzL
¶zn

� Hn + 1L â
k=0

n H-1Lk

k + 1
 

n

k
f HzL-k-1

¶n f HzLk

¶zn
�; n Î N+

This formula shows how to evaluate an nth-order derivative of the reciprocal 1 � f HzL.
¶n 1

f HzL
¶zn

�
∆n

f HzL + Hn + 1L â
k=1

n H-1Lk

k + 1
 

n

k
f HzL-k-1

¶n f HzLk

¶zn
�; n Î N

This formula shows how to evaluate an nth-order derivative of the reciprocal 1 � f HzL.
¶n 1

f HzL
¶zn

�
∆n

f HzL + Hn + 1L â
m=1

n H-1Lm

m + 1

n

m
f HzL-m-1 â

kH1L=0

n â
kH2L=0

n-kH1L
¼ â

kHm-1L=0

n-Új=1
m-2kH jL ä

p=1

m-1
n - Új=1

p-1
kH jL

kHpL ä
i=1

m-1 ¶kHiL f HzL
¶zkHiL

¶n-Új=1
m-1kH jL f HzL

¶zn-Új=1
m-1kH jL �;

n Î N

This formula shows how to evaluate an nth-order derivative of the reciprocal 1 � f HzL.
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¶n 1

f HzL
¶zn

�
∆n

f HzL + Hn + 1L â
m=1

n H-1Lm

m + 1
 

n

m
f HzL-m-1 â

n1=0

n â
n2=0

n

¼ â
nm=0

n

∆n,Úk=1
m nk

Hn1 + n2 + ¼ + nm; n1, n2, ¼, nmL ä
k=1

m ¶nk f HzL
¶znk

�; n Î N

This formula shows how to evaluate an nth-order derivative of the reciprocal 1 � f HzL.
Log from function

¶n logH f HzLL
¶zn

� ∆n log H f HzLL + â
k=1

n H-1Lk-1

k f HzLk
 

n

k
 
¶n f HzLk

¶zn
�; n Î N

This formula shows how to evaluate an nth-order derivative of the composition with logarithm logH f HzLL.
¶n logH f HzLL

¶zn
�

∆n logH f HzLL + â
m=1

n H-1Lm-1

m
 

n

m
 f HzL-m â

kH1L=0

n â
kH2L=0

n-kH1L
¼ â

kHm-1L=0

n-Új=1
m-2kH jL ä

p=1

m-1
n - Új=1

p-1
kH jL

kHpL ä
i=1

m-1 ¶kHiL f HzL
¶zkHiL

¶n-Új=1
m-1kH jL f HzL

¶zn-Új=1
m-1kH jL �; n Î N

This formula shows how to evaluate an nth-order derivative of the composition with logarithm logH f HzLL.

This formula shows how to evaluate an nth-order derivative of the composition with logarithm logH f HzLL.
Exp from function

¶n ãgHzL
¶zn

� ãgHzL â
m=0

n 1

m!
 â
j=0

m H-1L j m

j
gHzL j

¶n gHzLm- j

¶zn
�; n Î N

This formula shows how to evaluate an nth-order derivative of the composition with exponential function expH f HzLL.
¶n ãgHzL

¶zn
� ãgHzL ∆n + â

m=1

n 1

m!
 â
j=0

m H-1L j m

j
gHzL j

¶n gHzLm- j

¶zn
�; n Î N

This formula shows how to evaluate an nth-order derivative of the composition with exponential function expH f HzLL.
¶n ãgHzL

¶zn
� ãgHzL â

m=1

n â
k1+ 2 k2+¼+ n kn=n

∆m,Úr=1
n kr

 
n!

Ûj=1
n j !k j k j !

 ä
j=1

n

gH jLHzLk j �; n Î N+

This formula shows how to evaluate an nth-order derivative of the composition with exponential function expH f HzLL.
¶n ãgHzL

¶zn
� ãgHzL â

m=0

n 1

m!
 â
q=0

m H-1Lq m

q
gHzLq

∆n ∆m-q - gHnLHzL ∆m-q + â
kH1L=0

n â
kH2L=0

n-kH1L
¼ â

kHm-q-1L=0

n-Új=1
m-q-2kH jL ä

p=1

m-q-1
n - Új=1

p-1
kH jL

kHpL ä
i=1

m-q-1 ¶kHiL gHzL
¶zkHiL

¶n-Új=1
m-q-1kH jL gHzL

¶zn-Új=1
m-q-1kH jL �; n Î N
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This formula shows how to evaluate an nth-order derivative of the composition with exponential function expH f HzLL.
¶n ãgHzL

¶zn
� ãgHzL ∆n + â

m=1

n 1

m!
 â
j=0

m H-1L j m

j
gHzL j â

n1=0

n â
n2=0

n

¼ â
nm- j=0

n

∆
n,Úk=1

m- jnk
In1 + n2 + ¼ + nm- j; n1, n2, ¼, nm- jM ä

k=1

m- j ¶nk f HzL
¶znk

�;
n Î N

This formula shows how to evaluate an nth-order derivative of the composition with exponential function expH f HzLL.
Function from power

¶n f HzaL
¶zn

� â
k=0

n â
j=0

k H-1L j Ha k - a j - n + 1Ln f HkLHzaL
j ! Hk - jL ! zn-a k

�; n Î N

This formula shows how to evaluate an nth-order derivative of the composition with power function f HzaL.
¶n f Iz2M

¶zn
� â

k=0

n H2 k - n + 1L2 Hn-kL
Hn - kL ! H2 zLn-2 k

 f HkLIz2M �; n Î N

This formula shows how to evaluate an nth-order derivative of the composition f Iz2M.
¶n f J 1

z
N

¶zn
� f

1

z
∆n + H-1Ln â

k=1

n Hn - 1L !

Hk - 1L ! zk+n
 

n

k
f HkL 1

z
�; n Î N

This formula shows how to evaluate the derivative of the  nth-order of the composition f H1 � zL.
¶n f I z N

¶zn
� â

k=0

n H-1Ln-k HkL2 Hn-kL
Hn - kL ! I2 z N2 n-k

 f HkLI z N �; n Î N

This formula shows how to evaluate an nth-order derivative of the composition f I z M.
Function from exponent

¶n f HãzL
¶zn

� â
k=0

n

ãk z Sn
HkL f HkLHãzL �; n Î N+

This formula shows how to evaluate an nth-order derivative of the composition f HãzL.
¶n f HazL

¶zn
� lognHaL â

k=0

n

ak z Sn
HkL f HkLHazL �; n Î N

This formula shows how to evaluate an nth-order derivative of the composition f HazL.
¶n f Iã1�zM

¶zn
� f Iã1�zM ∆n + H-1Ln â

k=1

n Hn - 1L !
n

k

Hk - 1L ! zk+n
 â
m=0

k

ãm�z Sk
HmL f HmLIã1�zM �; n Î N
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This formula shows how to evaluate an nth-order derivative of the composition f Iã1�zM.
¶n f Icb�zM

¶zn
� f Icb�zM ∆n + H-1Ln â

k=1

n Hn - 1L !
n

k
Hb logHcLLk

Hk - 1L ! zk+n
 â
m=0

k

c
m b

z Sk
HmL f HmLIcb�zM �; n Î N

This formula shows how to evaluate an nth-order derivative of the composition f Icb�zM.
¶n f Jã z N

¶zn
� â

k=0

n H-1Ln-k HkL2 Hn-kL
Hn - kL ! I2 z N2 n-k

â
m=0

k

ãm z Sk
HmL f HmLJã z N �; n Î N

This formula shows how to evaluate an nth-order derivative of the composition f Jã z N.
¶n f Iãz2 M

¶zn
� â

k=0

n H2 k - n + 1L2 Hn-kL
Hn - kL ! H2 zLn-2 k

 â
m=0

k

ãm z2 Sk
HmL f HmLJãz2 N �; n Î N

This formula shows how to evaluate an nth-order derivative of the composition f Iãz2 M.
¶n f Iãza M

¶zn
� â

k=0

n â
j=0

k H-1L j Ha k - a j - n + 1Ln

j ! Hk - jL ! zn-a k
â
m=0

k

ãm za Sk
HmL f HmLIãza M �; n Î N

This formula shows how to evaluate an nth-order derivative of the composition f Iãza M.
¶n f Jcb z N

¶zn
� â

k=0

n H-1Ln-k HkL2 Hn-kL Hb logHcLLk

Hn - kL ! I2 z N2 n-k
 â
m=0

k

cm b z Sk
HmL f HmLJcb z N �; n Î N

This formula shows how to evaluate an nth-order derivative of the composition f Jcb z N.
¶n f Icb z2 M

¶zn
� â

k=0

n H2 k - n + 1L2 Hn-kL Hb logHcLLk

Hn - kL ! H2 zLn-2 k
â
m=0

k

cm b z2 Sk
HmL f HmLJcb z2 N �; n Î N

This formula shows how to evaluate an nth-order derivative of the composition f Icb z2 M.
¶n f Icb za M

¶zn
� â

k=0

n â
j=0

k H-1L j H-a j + a k - n + 1Ln Hb logHcLLk

j ! Hk - jL ! zn-a k
â
m=0

k

cm b za Sk
HmL f HmLIcb za M �; n Î N

This formula shows how to evaluate an nth-order derivative of the composition f Icb za M.
Function from trigonometric functions
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¶n f HsinHzLL
¶zn

� f HsinHzLL ∆n +

â
m=1

n 1

m!
 â

j=0

m-1 m

j â
l=0

m- j H-1L j 2 j-m sin jHzL H j + 2 l - mLn exp -
ä

2
 Hn Π - H j + 2 l - mL HΠ - 2 zLL  

m - j

l
f HmLHsinHzLL �; n Î N

This formula shows how to evaluate an nth-order derivative of the composition f HsinHzLL.
¶n f HsinHzLL

¶zn
� â

m=1

n f HmLHsinHzLL
m!

¶n HsinHyL - sinHzLLm

¶ yn
�. 8y ® z< �; n Î N+

This formula shows how to evaluate an nth-order derivative of the composition f HsinHzLL.
¶n f HcosHzLL

¶zn
� f HcosHzLL ∆n + än â

m=1

n 1

m!
 â

j=0

m-1 H-1L j m

j â
l=0

m- j

2 j-m cos jHzL H j + 2 l - mLn ãH j+2 l-mL ä z m - j

l
f HmLHcosHzLL �; n Î N

This formula shows how to evaluate an nth-order derivative of the composition f HcosHzLL.
¶n f HcosHzLL

¶zn
� â

m=1

n f HmLHcosHzLL
m!

 
¶n HcosHyL - cosHzLLm

¶ yn
�. 8y ® z< �; n Î N+

This formula shows how to evaluate an nth-order derivative of the composition f HcosHzLL.
Function from hyperbolic functions

¶n f HsinhHzLL
¶zn

�

f HsinhHzLL ∆n + H-1Ln â
m=1

n 1

m!
 â

j=0

m-1 m

j â
l=0

m- j H-1L j-l 2 j-m sinh jHzL H j + 2 l - mLn ã-H j+2 l-mL z m - j

l
f HmLHsinhHzLL �; n Î N+

This formula shows how to evaluate an nth-order derivative of the composition f HsinhHzLL.
¶n f HsinhHzLL

¶zn
� â

m=1

n ¶n HsinhHyL - sinhHzLLm

¶ yn
�. 8y ® z< f HmLHsinhHzLL

m!
�; n Î N+

This formula shows how to evaluate an nth-order derivative of the composition f HsinhHzLL.
¶n f HcoshHzLL

¶zn
� f HcoshHzLL ∆n + â

m=1

n 1

m!
 â

j=0

m-1 H-1L j m

j â
i=0

m- j

2 j-m cosh jHzL H2 i + j - mLn ãH2 i+ j-mL z m - j

i
f HmLHcoshHzLL �; n Î N

This formula shows how to evaluate an nth-order derivative of the composition f HcoshHzLL.
¶n f HcoshHzLL

¶zn
� â

m=1

n f HmLHcoshHzLL
m!

 
¶n HcoshHyL - coshHzLLm

¶ yn
�. 8y ® z< �; n Î N+

This formula shows how to evaluate an nth-order derivative of the composition f HcoshHzLL.
General compositions
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¶n f HgHzLL
¶zn

� â
m=0

n 1

m!
 â

j=0

m H-1L j m

j
 gHzL j

¶n gHzLm- j

¶zn
f HmLHgHzLL �; n Î N

This formula shows how to evaluate an nth-order derivative of the general composition f HgHzLL.
¶n f HgHzLL

¶zn
� f HgHzLL ∆n + â

m=1

n 1

m!
 â

j=0

m H-1L j m

j
 gHzL j

¶n gHzLm- j

¶zn
f HmLHgHzLL �; n Î N

This formula shows how to evaluate an nth-order derivative of the general composition f HgHzLL.
¶n f HgHzLL

¶zn
� â

m=1

n â
k1+ 2 k2+¼+ n kn=n

∆m,Úr=1
n kr

 
f HmLHgHzLL n!

Ûj=1
n j !k j k j !

 ä
j=1

n

gH jLHzLk j �; n Î N+

This formula is called Faá di Bruno's formula.

¶n f HgHzLL
¶zn

� â
m=0

n 1

m!
 â
q=0

m H-1Lq m

q
gHzLq ∆n ∆m-q - gHnLHzL ∆m-q +

â
kH1L=0

n â
kH2L=0

n-kH1L
¼ â

kHm-q-1L=0

n-Új=1
m-q-2kH jL ä

p=1

m-q-1
n - Új=1

p-1
kH jL

kHpL ä
i=1

m-q-1 ¶kHiL gHzL
¶zkHiL

¶n-Új=1
m-q-1kH jL gHzL

¶zn-Új=1
m-q-1kH jL f HmLHgHzLL �; n Î N

This formula, Faá di Bruno's relation, shows how to evaluate an nth-order derivative of the general composition

f HgHzLL.
¶n f HgHzLL

¶zn
� f HgHzLL ∆n +

â
m=1

n 1

m!
 f HmLHgHzLL â

j=0

m H-1L j m

j
gHzL j â

n1=0

n â
n2=0

n

¼ â
nm- j=0

n

∆
n,Úk=1

m- jnk
In1 + n2 + ¼ + nm- j; n1, n2, ¼, nm- jM ä

k=1

m- j ¶nk f HzL
¶znk

�; n Î N

This formula shows how to evaluate an nth-order derivative of the general composition f HgHzLL.
General power exponential compositions

¶n f HzLgHzL
¶zn

�

f HzLgHzL ∆n + â
m=1

n 1

m!
 â

j=0

m-1 H-1L j m

j
HgHzL logH f HzLLL j â

kH1L=1

n â
kH2L=0

n

¼ â
kHm- jL=0

n

∆
n,Úv=1

m- jkHvL HkH1L + kH2L + ¼ + kHm - jL; kH1L, kH

2L, ¼, kHm - jLL ä
i=1

m- j â
s=0

kHiL
kHiL
s

∆s logH f HzLL + â
h=1

s H-1Lh-1

h f HzLh
 

s

h
â

qH1L=0

s â
qH2L=0

s

¼ â
qHhL=0

s

∆
s,Úu=1

h qHuL

HqH1L + qH2L + ¼ + qHhL; qH1L, qH2L, ¼, qHhLL ä
i=1

h ¶qHiL f HzL
¶zqHiL

¶kHiL-s gHzL
¶zkHiL-s

�; n Î N

This formula shows how to evaluate an nth-order derivative of the general power exponential composition f HzLgHzL.
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¶n zz

¶zn
�

zz ∆n + â
m=1

n 1

m!
 â

j=0

m-1 H-1L j m

j
Hz logHzLL j â

kH1L=0

n â
kH2L=0

n

¼ â
kHm- jL=0

n

∆
n,Úv=1

m- jkHvL HkH1L + kH2L + ¼ + kHm - jL; kH1L, kH2L, ¼, kHm - jLL

ä
i=1

m- j IIkHiL SkHiL-1
H1L + SkHiLH1L M z1-kHiL + logHzL IkHiL SkHiL-1

H0L + z SkHiLH0L MM �; n Î N

This formula shows how to evaluate an nth-order derivative of the general power exponential composition zz.

Inverse function

f H-1LHnLHzL � ∆n f H-1LHzL + I f ¢I f H-1LHzLMM-n
 â
j2=0

n

¼ â
jn=0

n

∆Úi=2
n Hi-1L ji ,n-1 H-1LÚi=2

n ji n + â
i=2

n

ji - 1 ! ä
i=2

n 1

ji !
 

f HiLI f H-1LHzLM
i! f ¢I f H-1LHzLM

ji �; n Î N

This formula shows how to evaluate an nth-order derivative of the inverse function f H-1LHzL.
Repeated derivatives

z
¶

¶z
 ¼ z

¶

¶z
n times

 H f HzLL � â
k=0

n

Sn
HkL zk

¶k f HzL
¶zk

�; n Î N

This formula shows how to apply n times the operation z ¶
¶z

 to the function f HzL. 
Hz - aL ¶

¶z
 ¼ Hz - aL ¶

¶z
n times

 H f  HzLL � â
k=0

n

Sn
HkL Hz - aLk

¶k f HzL
¶zk

�; n Î N

This formula shows how to apply n times the operation Hz - aL ¶
¶z

 to the function f HzL. 
Fractional integro-differentiation

¶Α f HzL
¶zΑ

�
¶n Ù0

z f HtL Hz-tLn+Α-1

GHn+ΑL  ât

¶zn n � dReH-ΑLt + 1 ß ReH-ΑL £ 0

Ù0

z f HtL Hz-tL-Α-1

GH-ΑL  â t True

The Αth  fractional integro-derivative of the function f HzL  with respect to z  is defined by the preceding formula,

where  the  integration  in  Mathematica  should  be  performed  with  the  option  GenerateConditions->False:

IntegrateB f@tD Hz-tLΑ+n-1

Gamma@Α+nD , 8t, 0, z<, GenerateConditions ® False.   This definition supports the

Riemann-Liouville-Hadamard fractional left-sided integro-differentiation at the point 0.

¶Α f HzL
¶zΑ

� à
0

z f HtL Hz - tL-Α-1

GH-ΑL  â t �; ReH-ΑL > 0
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This formula for the Αth  fractional integro-derivative represents the fractional integral of the function f HzL with

respect to z. This integral is called the Abel integral.

¶Α f HzL
¶zΑ

�
¶n KÙ0

z f HtL Hz-tLn+Α-1

GHn+ΑL  â tO
¶zn

�; n � dReH-ΑLt + 1 ß ReH-ΑL £ 0

This formula for the Αth  fractional integro-derivative actually represents the fractional derivative of the function

f HzL with respect to z. This derivative includes the composition of the corresponding usual nth  derivative of order

n � dReH-ΑLt + 1 and an Abel integral.

¶Α IÚk=0
¥ ck zkM
¶zΑ

� â
k=0

¥ k ! ck zk-Α

GHk - Α + 1L
This formula shows how to evaluate the Αth   fractional integro-derivative of the analytical function near the point

z � 0.

¶Α IlognHzL Úk=-¥
¥ ck za+kM

¶zΑ
� â

k=-¥

¥

ck FClog
HΑL Hz, a + k, nL zk+a-Α �; n Î N

This  formula  shows  how to  evaluate  the  Αth  fractional  integro-derivative  of  a  function  having  Laurent  series

expansion, multiplied on lognHzL za near the point z � 0.

¶Α f HzL
¶zΑ

� â
k=0

¥ â
j=0

¥ k ! a j+k
j + k

k
H-z0L j zk-Α

GHk - Α + 1L �; f HzL � â
k=0

¥

ak Hz - z0Lk

This formula shows that for the evaluation of the Αth  fractional integro-derivative of the analytical function f HzL
near the point z � z0, you need to re-expand this function in a series near the point z � 0 and then evaluate the

corresponding integro-derivative.

Integration

Indefinite integration

For the direct function

à f ¢HzL â z � f HzL
Integration of the derivative gives the original function.

à H f HzL ± gHzLL â z � à f HzL â z ± à gHzL â z

The integral of the sum gives the sum of the integrals.

à c f HzL â z � c à f HzL â z
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The constant factor can be placed outside of the integral.

à f HgHzLL g¢HzL â z � à f HwL â w �; w � gHzL
This formula reflects the changing variables rule in the integral.

à f HzL g¢HzL â z � f HzL gHzL - à gHzL f ¢HzL â z

This formula reflects the integration by parts rule.

à f HzL ¶n gHzL
¶zn

 â z � H-1Ln à ¶n f HzL
¶zn

gHzL â z + â
k=0

n-1 H-1Lk
¶k f HzL

¶zk

¶n-k-1 gHzL
¶zn-k-1

This formula reflects the generalized integration by parts rule.

à f HzL â z � â
k=0

¥ à ukHzL â z �; f HzL � â
k=0

¥

ukHzL
The integral of the sum is equal to the sum of the integrals of the summands (under some restrictions for conver-

gence of the occurring infinite series).

à f HzL â z � â
k=0

¥ ak zk+1

k + 1
�;  z¤ < r í f HzL � â

k=0

¥

ak zk �;  z¤ < r

The integral from the power series is equal to the sum of the integrals from each term of the series (inside some

circle of convergence).

Repeated indefinite integration

à â z ¼ Kà â z

n times

 H f HzLL � à
0

z Hz - tLn-1

Hn - 1L !
 f HtL â t

This formula reflects repeated indefinite integration, where the integration in Mathematica  should be performed

with  the  option  GenerateConditions -> False:  Integrate@ Hz-tLn-1

Hn-1L!
 f@tD, 8t, 0, z<,

GenerateConditions ® FalseD. 

à 1

z
 â z ¼ à 1

z
 â z

n times

 H f HzLL � à
0

z HlogHzL - logHtLLn-1

t Hn - 1L !
 f HtL â t

This formula reflects repeated indefinite integration, where the integration in Mathematica  should be performed

with  the  option  GenerateConditions -> False:  Integrate@ HLog@zD-Log@tDLn-1

t Hn-1L!
 f@tD, 8t, 0, z<,

GenerateConditions ® FalseD. 

Definite integration
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For the direct function

à
a

b

f HtL â t � â
j=0

¥ Hb - aL2 k+1

4k H2 k + 1L !
 f H2 kL b - a

2

à
a

b

f ¢HtL â t � f HbL - f HaL

à
a

bH f HtL ± gHtLL â t � à
a

b

f HtL â t ± à
a

b

gHtL â t

à
a

b

c f HtL â t � c à
a

b

f HtL â t

à f HzL g¢HzL â z � f HzL gHzL - à gHzL f ¢HzL â z

à
a

b

f HgHtLL g¢HtL â t � à
gHaL

gHbL
f HΤL â Τ �; Τ � gHtL

à
b

a

f HtL â t � -à
a

b

f HtL â t

à
a

b

f HtL â t � à
a

c

f HtL â t + à
c

b

f HtL â t

à
a

b

f HtL â t + à
b

c

f HtL â t � à
a

c

f HtL â t

à
a

b

f HtL â t � â
k=0

¥ ak Ibk+1 - ak+1M
k + 1

�; f HzL � â
k=0

¥

ak zk

à
b

a

f HtL gHtL â t � f HΤL à
a

b

gHtL â t �; Τ Î Ha, bL ì g@tD ³ 0 �; t Î Ha, bL

à
b

a

f HtL gHtL â t � Μ à
a

b

gHtL â t �; minH f HtLL £ Μ £ maxH f HtLL
This formula reflects the first mean value theorem.

à
b

a

f HtL gHtL â t � f HaL à
a

Α

gHtL â t �; Α Î Ha, bL ì f ¢HtL < 0 ì f HtL ³ 0 �; t Î Ha, bL
This formula reflects the second mean value theorem.

à
b

a

f HtL gHtL â t � f HbL à
Β

b

gHtL â t �; Β Î Ha, bL ì f ¢HtL > 0 ì f HtL ³ 0 �; t Î Ha, bL

à
b

a

f HtL gHtL â t � f HaL à
a

Α

gHtL â t + f HbL à
Α

b

gHtL â t �; Α Î Ha, bL ì f ¢HtL > 0 �; t Î Ha, bL
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à
Α

Βà
a

b

f Ht, zL â t â z � à
a

bà
Α

Β

f Ht, zL â z â t

à
a

bà
a

b f Ht, ΤL
Ht - xL HΤ - tL  â t â Τ � à

a

bà
a

b f Ht, ΤL
Ht - xL HΤ - tL  â Τ â t - Π2 f Hx, xL �; x Î Ha, bL

This formula is called the Poincaré-Bertrand formula.

à
0

Βà
0

z

f Ht, zL â t â z � à
0

Βà
t

Β

f Ht, zL â z â t

à
a

b â
k=0

¥

akHzL  â z � â
k=0

¥ à
a

b

akHzL â z

Orthogonality

See Generalized Fourier series in the section Series representations.

Cauchy integrals

FHzL �
1

2 Π ä
 à

L

jHtL
t - z

 â t

This formula is called the Cauchy-type integral along the piecewise smooth contour L  (which can be closed or

opened). The density function jHΤL must be continuous along L, but it must also meet a more stringent test known

as the Hölder condition. The function jHtL satisfies the Hölder condition if, for two arbitrary points t1, t2  on the

curve,  jHt2L - jHt1L¤ < A  t2 - t1¤Λ for some positive constants A and 0 < Λ £ 1. The Cauchy-type integral is analytic

everywhere on the complex plane except on the contour L itself, which is a singular line for this integral. Since the

integral contains a factor (called the kernel) in the form of 1 � HΤ - zL, it diverges at Τ � z for any z lying on L. 

1

2 Π ä
 à

L

jHtL
t - z

 â t � jHzL z Î D+

0 z Î D-

This formula is called the Cauchy integral formula for the Cauchy integral. It is valid if L  is a closed, smooth

contour enclosing the region D+  on the complex plane, and the function jHzL is analytic over D+, continuous over

D+ Ü L, and D- represents the region outside of L.

Singular integrals

FHzL �
1

2 Π ä
 à

L

jHtL
t - z

 â t �; z Î L

In this Cauchy-type integral, the singular point z belongs to the contour L and under the integrand function has a

nonintegrable singularity.  That is  why this improper integral is called a singular integral.  It  can be evaluated,

however, if a small neighborhood around this singularity t � z is removed from the path of integration. The corre-

sponding limit, as the size of the neighborhood shrinks to zero, is the Cauchy principal value  of this divergent

integral. For example:

P à
a

b jHtL
t - x

 â t � lim
Ε®0

à
a

x-Ε jHtL
t - x

 â t + à
x+Ε

b jHtL
t - x

 â t �; a < x < b
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In this example, P Ù  represents the Cauchy principal value, and the contour L is simply a straight segment on the

real axis from a to b; in other words, L = Ha, bL. Rather than integrating from a through the point x Î L to the point

b, you can integrate on the intervals Ha, x - ΕL and Hx + Ε, bL and then add these results to arrive at a value. By taking

the limit of this calculation as Ε ® 0, you can state the principal value.

P à
L

jHtL
t - t0

 â t � lim
·®0

à
L-l

jHtL
t - t0

 â t �; t0 Î L

This formula represents the Cauchy principal value of singular curvilinear integrals by the curve L with a circular

neighborhood l, centered on t0 and of radius ·, removed.

Sokhotskii formulas

General

FHzL �
1

2 Π ä
 à

L

jHtL
t - z

 â t

FHzL � F+@zD z Î D+

F-@zD z Î D-

This formula represents the function FHzL as a piecewise analytic function in the case when L is a closed, smooth

contour enclosing the region D+  on the complex plane and D-  represents the region outside of L. If t0 Î L , the

values F+ Ht0L and F- Ht0L can be defined as the following limits:

F+HΤ0L � lim
z®t0

FHzL �; z Î D+ ì t0 Î L

F-HΤ0L � lim
z®t0

FHzL �; z Î D- ì t0 Î L

If L is an open contour with endpoints a and b, you can add an additional arbitrary curve segment connecting b to a

(with the sense that F+HΤL  corresponds to the limiting value from the left) and assign jHΤL = 0 along this new

segment. This extension allows you to apply the definitions for F+ and F- to open contours L.

F+Ht0L �
jHt0L

2
+

1

2 Π ä
 P à

L

jHtL
t - t0

 â t �; t0 Î L

F-Ht0L � -
jHt0L

2
+

1

2 Π ä
 P à

L

jHtL
t - t0

 â t �; t0 Î L

These two formulas are called the  Sokhotskii  formulas.  They were first  derived by Y. V. Sokhotskii  in 1873.

Because they were later given a more rigorous treatment by J. Plemelj in 1908, they are often referred to as the

Plemelj formulas. Sometimes the name Sokhotskii–Plemelj formulas is used.

F+Ht0L + F-Ht0L �
1

Π ä
 P à

L

jHtL
t - t0

 â t

F+Ht0L - F-Ht0L � jHt0L
The second of these formulas can be obtained from the Sokhotskii formulas by addition and subtraction.
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In particular, if jHzL is analytical over D+ Ü L, then F+Ht0L � jHt0L and F-Ht0L � 0. 

If the contour L is a finite or infinite segment of the real axis, L = Ha, bL, these formulas hold for all a < x < b, and

so F+HxL � limΕ®+0 FHx + ä ΕL, F-HxL � limΕ®-0 FHx - ä ΕL. Thus FHzL is an analytic function with a jump discontinu-

ity at L, and the size of the jump is determined by the Sokhotskii formulas.

Example: The exponential integral Ei

FHzL �
1

2 Π ä
 à

0

¥ ã-t

t - z
 â t

After evaluation of this integral, you get:

FHzL �
ã-z

2 Π ä
 

Π ä - EiHzL ImHzL > 0

-Π ä - EiHzL ImHzL < 0

-EiHzL ImHzL � 0

For arbitrary x > 0, the Sokhotskii formulas give the following values:

F+HxL �
ã-x

2
+

-ã-x Ei HxL
2 Π ä

F+HxL � -
ã-x

2
+

-ã-x Ei HxL
2 Π ä

F+HxL + F-HxL �
1

Π ä
 P à

0

¥ ã-Τ

Τ - x
 â Τ

F+HxL + F-HxL � -
ã-x EiHxL

Π ä

F+HxL - F-HxL � ã-x

It is important to note that for -¥ < z < 0, the function FHzL is analytic and its limit values taken from either side of

the real axis should agree with each other. This gives the relations: 

lim
Ε®0+

HΠ ä - EiHx + ä ΕLL � -EiHxL
lim

Ε®0+
H-Π ä - EiHx - ä ΕLL � -EiHxL

This leads to the following behavior of EiHxL:
lim

Ε®0+
EiHx + ä ΕL � EiHxL + Π ä

lim
Ε®0+

EiHx - ä ΕL � EiHxL - Π ä

Example: Beta-type integral
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FHzL �
1

2 Π ä
 à

0

¥ tΑ-1

t - z
 â t

This integral can be called a beta-type integral. It can be evaluated by the following formulas:

FHzL �
1

2 Π ä
 

Π H-zLΑ-1 cscHΑ ΠL 0 < ReHΑL < 1 ì argHzL ¹ 0

-Π zΑ-1 cotHΑ ΠL 0 < ReHΑL < 1 ß z > 0

For arbitrary x > 0, the Sokhotskii formulas give the following results when you take into account the fact that, as

Ε ® +0, H-zLΑ-1is continuous for -z = -x + ä Ε but has a jump of size ã-ä Α Π  compared to when it is approached

from the other side, -z = -x - ä Ε.

F+HxL � lim
Ε®0+

H-x - ä ΕLΑ-1 cscHΠ ΑL
2 ä

� -
xΑ-1 ã-ä Α Π cscHΑ ΠL

2 ä
�

xΑ-1

2
+

ä

2
cotHΑ ΠL xΑ-1

F-HxL � lim
Ε®0+

H-x + ä ΕLΑ-1 cscHΠ ΑL
2 ä

� -
xΑ-1 ãä Α Π cscHΑ ΠL

2 ä
� -

xΑ-1

2
+

ä

2
cotHΑ ΠL xΑ-1

F+HxL + F-HxL � -
xΑ-1 ã-ä Α Π cscHΑ ΠL

2 ä
-

xΑ-1 ãä Α Π cscHΑ ΠL
2 ä

� ä xΑ-1 cotHΑ ΠL �
1

Π ä
 à

0

¥ tΑ-1

t - x
 â t

F+HxL - F-HxL �
xΑ-1 ãä Α Π cscHΑ ΠL

2 ä
-

xΑ-1 ã-ä Α Π cscHΑ ΠL
2 ä

� xΑ-1

Integral transforms

Exponential Fourier transform

Definition

Ft@ f HtLD HzL �
1

2 Π
 à

-¥

¥

f HtL ãä t z â t

This formula is the definition of the exponential Fourier transform of the function f  with respect to the variable t. If

the integral does not converge, the value of Ft@ f HtLD HzL is defined in the sense of generalized functions for functions

f HtL that do not grow faster than polynomials at ± ¥.

Properties

Linearity

Ft@a f HtL + b gHtLD HzL � a HFt@ f HtLD HzLL + b HFt@gHtLD HzLL
This formula reflects the linearity of the exponential Fourier transform.

Reflection

Ft@ f H-tLD HzL � Ft@ f HtLD H-zL
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This formula is called the reflection property of the exponential Fourier transform.

Dilation

Ft@ f Ha tLD HzL �
1

 a¤  Ft@ f HtLD 
z

a
�; a Î R ß a ¹ 0

This formula reflects the scaling or dilation property of the exponential Fourier transform.

Shifting or translation

Ft@ f Ht - aLD HzL � ãä a z HFt@ f HtLD HzLL �; a Î R

This formula reflects the shifting or translation property of the exponential Fourier transform.

Modulation

FtAãä a t f HtLE HzL � Ft@ f HtLD Ha + zL �; a Î R

This formula reflects the modulation property of the exponential Fourier transform.

Ft@cosHb tL f Ha tLD HzL �
ä

2  a¤  Ft@ f HtLD 
z - b

a
- Ft@ f HtLD 

z + b

a
�; a Î R ì b Î R

This formula reflects the modulation property of the exponential Fourier transform.

ä

2  a¤  Ft@ f HtLD 
z - b

a
- Ft@ f HtLD 

z + b

a
�; a Î R ì b Î R

This formula reflects the  modulation property of the exponential Fourier transform.

Power scaling

Ft@tn f HtLD HzL � än
¶n HFt@ f HtLD HzLL

¶zn
�; n Î N+

The power scaling property shows that multiplication of a function by tn  corresponds to the nth  derivative of the

exponential Fourier transform.

FtB f HtL
t

F HzL � ä à
a

¥

Ft@ f HtLD HzL â z +
1

2 Π
 à

-¥

¥ f HtL ãä a t

t
 â t

This formula shows that multiplication of a function by t-1  corresponds to integration of the exponential Fourier

transform.

Multiplication
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Ft@ f HtL gHtLD HzL �
1

2 Π
 à

-¥

¥IFΗ@ f HΗLD Hz - ΤLM IFΗ@gHΗLD HΤLM â Τ

The multiplication property shows that the exponential Fourier transform of a product gives the convolution of the

exponential Fourier transform divided by 2 Π .

Conjugation

Ft@ f HtLD HzL � HFt@ f HtLD H-zLL
This formula reflects the conjugation property of the exponential Fourier transform.

Derivative

FtA f HnLHtLE HzL � H-ä zLn Ft@ f HtLD HzL �; lim t¤®¥
f HkLHtL � 0 í 0 £ k £ n - 1

The derivative property shows that the exponential Fourier transform of the nth  derivative gives the product of the

power function on the exponential Fourier transform.

Integral

FtBà
a

t

f HΤL â ΤF HzL �
ä

z
 HFt@ f HtLD HzLL + gHaL ∆HzL

This formula shows that the exponential Fourier transform of an integral gives the product of the power function

and the exponential Fourier transform plus an expression that includes a Dirac delta function.

Parseval identity

à
-¥

¥

f HtL gHtL â t � à
-¥

¥HFΤ@ f HΤLD HtLL HFΤ@gHΤLD HtLL â t

This formula is called the Parseval identity.

à
-¥

¥  f HtL¤2 â t � à
-¥

¥ FΤ@ f HΤLD HtL¤2 â t

This Bessel’s equality follows from the Parseval identity, when gHtL � f HtL.
Convolution theorem

FtBà
-¥

¥

f Ht - ΤL gHΤL â ΤF HzL � 2 Π  HFt@ f HtLD HzLL HFt@gHtLD HzLL
This Fourier convolution theorem or convolution (Faltung) theorem for the exponential Fourier transform shows

that the Fourier transform of a convolution is equal to the product of the Fourier transform multiplied by 2 Π .

Relations with other integral transforms
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With inverse exponential Fourier transform

FtAFΤ
-1@ f HΤLD HtLE HzL � f HzL

This formula reflects the relation between direct and inverse exponential Fourier transforms. In the point z � z0,

where f HzL  has  a  jump discontinuity the composition of  the inverse and direct  exponential  Fourier  transforms

converges to the mean 1
2

Ilimz®z0
+ f HzL + limz®z0

- f HzLM.
With Fourier cosine and sine transforms

Ft@ f HtLD HzL � FctB f HtL + f H-tL
2

F HzL + ä FstB f HtL - f H-tL
2

F HzL
This formula shows how the exponential Fourier transform can be represented through cosine and sine Fourier

transforms from even and odd parts.

With Laplace transform

Ft@ f HtLD HzL �
1

2 Π
 Lt@ f HtLD H-ä zL +

1

2 Π
 Lt@ f H-tLD Hä zL

This formula shows how the exponential Fourier transform can be represented through the Laplace transform.

With Mellin transform

Ft@ f HtLD HzL �
1

2 Π
 Mt@ f H-logHtLLD H-ä zL

This formula shows how the exponential Fourier transform can be represented through the Mellin transform.

With Z-transform

FtB â
n=-¥

¥

f HnL ∆Ht - nLF HxL � Zn@ f HnLD Iãä xM
This formula shows how the exponential Fourier transform can be represented through the Z-transform.

Inverse exponential Fourier transform

Definition

Ft
-1@ f HtLD HzL �

1

2 Π
 à

-¥

¥

f HtL ã-ä t z â t
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This formula is the definition of the inverse exponential Fourier transform of the function f  with respect to the

variable t.  If  the  integral  does  not  converge,  the  value of  Ft
-1@ f HtLD HzL  is  defined in  the  sense of  generalized

functions.

Relations with other integral transforms

With exponential Fourier transform

Ft
-1@ f HtLD HzL � Ft@ f HtLD H-zL

This near-equivalence identity shows that the inverse exponential Fourier transform in the point z coincides with

the direct Fourier transform in the point -z.

Ft
-1@ f HtLD HzL � Ft@ f H-tLD HzL

This near-equivalence identity shows that the inverse exponential Fourier transform in the point z coincides with

the direct Fourier transform in the point -z.

FtAFΤ
-1@ f HΤLD HtLE HzL � f HzL

This formula reflects the relation between the direct and inverse exponential Fourier transforms. In the point z � z0,

where f HzL has a jump discontinuity, the composition of inverse and direct exponential Fourier transforms con-

verges to the mean 1
2

Ilimz®z0
+ f HzL + limz®z0

- f HzLM.
Multiple exponential Fourier transform

Definition

F8t1 ,t2<@ f  Ht1, t2LD Hz1, z2L �
1

2 Π
 à

-¥

¥à
-¥

¥

f Ht1, t2L ãä Ht1 z1+t2 z2L â t1 â t2

This formula is the definition of the double exponential Fourier transform of the function f  with respect to the

variables t1, t2. If the integral does not converge, the value of F8t1,t2<@ f  Ht1, t2LD Hz1, z2L is defined in the sense of

generalized functions.

F9t1 ,t2 ,¼,tn=@ f  Ht1, t2, ¼, tnLD Hz1, z2, ¼, znL �
1

H2 ΠL n

2

 à
-¥

¥à
-¥

¥

¼ à
-¥

¥

f Ht1, t2, ¼, tnL ãä It1 z1+t2 z2+¼+tn  znM â tn ¼ â t2 â t1

n-times

This formula is the definition of the multiple exponential Fourier transform of the function 
f Ht1, t2, ¼, tnL with respect to the variables  t1, t2,…, tn over Rn. If this integral does not converge, the 
value of F8t1,t2,¼,tn<@ f  Ht1, t2, ¼, tnLD Hz1, z2, ¼, znL is defined in the sense of generalized functions.

Inverse multiple exponential Fourier transform

Definition

F8t1 ,t2<-1  @ f  Ht1, t2LD Hz1, z2L �
1

2 Π
 à

-¥

¥à
-¥

¥

f Ht1, t2L ã-ä Ht1 z1+t2 z2L â t1 â t2
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This formula is the definition of the inverse double exponential Fourier transform of the function f  with respect to

the variables t1, t2. If this integral does not converge, the value of F8t1,t2<-1 @ f  Ht1, t2LD Hz1, z2L is defined in the sense of

generalized functions.

F9t1 ,t2 ,¼,tn=-1  @ f  Ht1, t2, ¼, tnLD Hz1, z2, ¼, znL �
1

H2 ΠL n

2

 à
-¥

¥à
-¥

¥

¼ à
-¥

¥

f Ht1, t2, ¼, tnL ã-ä It1 z1+t2 z2+¼+tn  znM â tn ¼ â t2 â t1

n-times

This formula is the definition of the inverse multiple exponential Fourier transform of the function 
f Ht1, t2, ¼, tnL with respect to the variables  t1, t2,…, tn over Rn. If this integral does not converge, the 
value of F8t1,t2,¼,tn<-1 @ f  Ht1, t2, ¼, tnLD Hz1, z2, ¼, znL is defined in the sense of generalized functions.

Relations with other integral transforms

With multiple exponential Fourier transform

F9t1 ,t2 ,¼,tn=-1  @ f  Ht1, t2, ¼, tnLD Hz1, z2, ¼, znL � F9t1 ,t2 ,¼,tn=@ f  Ht1, t2, ¼, tnLD H-z1, -z2, ¼, -znL
This near-equivalence identity shows that the inverse multiple exponential Fourier transform in the point z coin-

cides with the direct multiple exponential Fourier transform at the point -z.

Fourier transform (continuous ® discrete)

Definition

FcdL;t@ f HtLD HkL �
1

L
 à

0

L

f HtL ã-
2 Π ä k t

L  â t �; k Î Z

General properties

Linearity

FcdL;t@a f HtL + b gHtLD HkL � a FcdL;t@ f HtLD HkL + b FcdL;t@gHtLD HkL
Reflection

FcdL;t@ f H-tLD HkL � FcdL;t@ f HtLD H-kL
Dilation

FcdL;t@ f Hm tLD HkL � JFcdL;t@ f HtLD J k

m
NN m k

0 True
�; m Î N+

Shifting or translation

FcdL;t@ f Ht - aLD HkL � ã-
2 Π ä k a

L  FcdL;t@ f HtLD HkL
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Modulation

FcdL;tBã
2 Π ä m t

L f HtLF HkL � FcdL;t@ f HtLD Hk - mL �; m Î Z

Multiplication

FcdL;t@ f HtL gHtLD HkL �
1

L
 â
j=-¥

¥ HFcdL;t@ f HtLD H jLL HFcdL;t@gHtLD Hk - jLL

Conjugation

FcdL;t@ f HtLD HkL � FcdL;t@ f HtLD H-kL
Derivative

FcdL;tB ¶ f HtL
¶ t

F HkL �
2 Π ä k

L
 FcdL;t@ f HtLD HkL

Grouping

FcdL;tBâ
j=0

m-1

f
t - j L

m
F HkL � m HFcdL;t@ f HtLD Hk mLL �; m Î N+

Summation

FcdL;tB â
j=-¥

¥

f Ht - j LLF HkL �
1

L
FcdL;t@ f HtLD 

k

L

Parseval identity

à
0

L

f HΤL gHΤL â Τ � â
j=-¥

¥ HFcdL;t@ f HtLD H jLL HFcdL;t@gHtLD H jLL

Convolution theorem

FcdL;tBà
0

L

f HΤL gHt - ΤL â ΤF HkL � L  HFcdL;t@ f HtLD HkLL HFcdL;t@gHtLD HkLL
Relations with other integral transforms

With inverse Fourier transform (continuous ® discrete)

FcdL;tAFcdL;k
-1 @ f HkLD HtLE HkL � f HkL
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Inverse Fourier transform (continuous ® discrete)

Definition

FcdL;k
-1 @ f HkLD HxL �

1

L
 â
k=-¥

¥

f HkL ã
2 Π ä k x

L

Relations with other integral transforms

With Fourier transform (continuous ® discrete)

FcdL;tAFcdL;k
-1 @ f HkLD HtLE HkL � f HkL

Fourier transform (discrete ® continuous)

Definition

FdcL;k@ f HkLD HxL �
1

L
 â
k=-¥

¥

f HkL ã-
2 Π ä k x

L

General properties

Linearity

FdcL;k@a f HkL + b gHkLD HxL � a FdcL;k@ f HkLD HxL + b FdcL;k@gHkLD HxL
Reflection

FdcL;k@ f H-kLD HxL � FdcL;k@ f HkLD H-xL
Dilation

FdcL;k@ f Hk mLD HxL �
1

m
 â

j=0

m-1

FdcL;k@ f HkLD 
x - j L

m
�; m Î N+

Shifting or translation

FdcL;k@ f Hk - mLD HxL � ã-
2 Π ä x m

L FdcL;k@ f HkLD HxL �; m Î Z

Modulation

FdcL;kBã
2 Π ä a k

L f HkLF HxL � FdcL;k@ f HkLD Hx - aL
Power scaling
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FdcL;k@k f HkLD HxL � -
L

2 Π ä
 
¶HFdcL;k@ f HkLD HxLL

¶ x

Multiplication

FdcL;k@ f HkL gHkLD HxL �
1

L
 à

0

LHFdcL;k@ f HkLD HtLL HFdcL;k@gHkLD Hx - tLL â t

Conjugation

FdcL;k@ f HkLD HxL � FdcL;k@ f HkLD H-xL
Sampling

FdcL;kB f
k

L
F HxL � â

j=-¥

¥ HFdcL;k@ f HkLD Hx - j LLL

Zero packing

FdcL;kB f J k

m
N m k

0 True
F HxL � H FdcL;k@ f HkLD Hm xLL �; m Î N+

Parseval identity

â
j=-¥

¥

f H jL gH jL � à
0

LHFdcL;k@ f HkLD HtLL HFdcL;k@gHkLD HtLL â t

Convolution theorem

FdcL;kB â
j=-¥

¥

f H jL gHk - jLF HxL � L H FdcL;k@ f HkLD HxLL H FdcL;k@gHkLD HxLL
Relations with other integral transforms

With inverse Fourier transform (discrete ® continuous)

FdcL;kAFdcL;t
-1@ f HtLD HkLE HxL � f HxL

Inverse Fourier transform (discrete ® continuous)

Definition

FdcL;t
-1@ f HtLD HkL �

1

L
 à

0

L

f HtL ã
2 Π ä k t

L  â t �; k Î Z
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Relations with other integral transforms

With Fourier transform (discrete ® continuous)

FdcL;kAFdcL;t
-1@ f HtLD HkLE HxL � f HxL

Fourier transform (discrete ® discrete)

Definition

Fddm;k@ f HkLD HnL �
1

m
 â
k=0

m-1

f HkL ã
-

2 Π ä k n

m �; m Î N+ ì n Î Z

General properties

Linearity

Fddm;k@a f HkL + b gHkLD HnL � a Fddm;k@ f HkLD HnL + b Fddm;k@gHkLD HnL �; m Î N+ ì n Î Z

Reflection

Fddm;k@ f H-kLD HnL � Fddm;k@ f HkLD H-nL �; m Î N+ ì n Î Z

Dilation

Fddm;k@ f Hk jLD HnL � â
i=0

j-1 HFddm;k@ f HkLD Hn - i mLL �; m Î N+ ì n Î Z ì j Î N+

Fddm;k@ f Hk jLD HnL � HFddm;k@ f HkLD Hr nLL �; m Î N+ ì n Î Z ì j Î Z ì gcdH j, mL � 1 ì j r � 1 mod m

Fddm;k@ f Hk jLD HnL � Úi=0
j-1 JFddm;r@ f HrLD J n-i m

j
NN j n

0 True
�; m Î N+ í n Î Z í j Î N+ í j m

Shifting or translation

Fddm;k@ f Hk - jLD HnL � ã
-

2 Π ä j n

m  Fddm;k@ f HkLD HnL �; m Î N+ ì n Î Z ì j Î Z

Modulation

Fddm;kBã
2 Π ä k j

m  f HkLF HnL � Fddm;k@ f HkLD Hn - jL �; m Î N+ ì n Î Z ì j Î Z

Multiplication

Fddm;k@ f HkL gHkLD HnL �
1

m
 â

j=0

m-1 HFddm;k@ f HkLD H jLL HFddm;k@gHkLD Hn - jLL �; m Î N+ ì n Î Z ì j Î Z
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Conjugation

Fddm;k@ f HkLD HnL � Fddm;k@ f HkLD H-nL
Repeat

Fddm;k@ f HkLD HnL �
Fddm;k@ f HkLD J n

j
N j n

0 True
�; m Î N+ ì n Î Z ì j Î Z

Zero packing

Fddm;kB f J k

j
N j k

0 True
F HnL �

1

j
 Fddm;k@ f HkLD HnL �; m Î N+ ì n Î Z ì j Î Z

Summation

Fddm;kBâ
i=0

j-1

f Hk - i mLF HnL � j HFddm;k@ f HkLD H j nLL �; m Î N+ ì n Î Z ì j Î Z

Parseval identity

â
j=0

m-1

f H jL gH jL � â
j=0

m-1 HFddm;k@ f HkLD H jLL HFddm;k@gHkLD H jLL �; m Î N+ ì n Î Z

Convolution theorem

Fddm;kBâ
j=0

m-1

f H jL gHk - jLF HnL � m HFddm;k@ f HkLD HnLL HFddm;k@gHkLD HnLL �; m Î N+ ì n Î Z

Relations with other integral transforms

With inverse Fourier transform (discrete ® discrete)

Fddm;kAFddm; j
-1 @ f H jLD HkLE HnL � f HnL �; m Î N+ ì n Î Z

Inverse Fourier transform (discrete ® discrete)

Definition

Fddm;k
-1 @ f HkLD HnL �

1

m
 â
k=0

m-1

f HkL ã
2 Π ä k n

m �; m Î N+ ì n Î Z

Relations with other integral transforms
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With Fourier transform (discrete ® discrete)

Fddm,kAFddm; j
-1 @ f H jLD HkLE HnL � f HnL �; m Î N+ ì n Î Z

Fourier cosine transform

Definition

Fct@ f HtLD HzL �
2

Π
à

0

¥

f HtL cosHt zL â t

This formula is the definition of the Fourier cosine transform of the function f  with respect to the variable t. If the

integral does not converge, the value of Fct@ f HtLD HzL is defined in the sense of generalized functions.

General properties

Linearity

Fct@a f HtL + b gHtLD HzL � a Fct@ f HtLD HzL + b Fct@gHtLD HzL
This formula reflects the linearity of the Fourier cosine transform.

Scaling

Fct@ f Ha tLD HzL �
1

a
 Fct@ f HtLD 

z

a
�; a > 0

This formula reflects the scaling property of the Fourier cosine transform.

Modulation

Fct@cosHb tL f Ha tLD HzL �
1

2 a
Fct@ f HtLD 

z + b

a
+ Fct@ f HtLD 

z - b

a
�; a > 0 ì b > 0

This formula reflects the modulation property of the Fourier cosine transform.

Fct@sinHb tL f Ha tLD HzL �
1

2 a
 Fst@ f HtLD 

z + b

a
- Fst@ f HtLD 

z - b

a
�; a > 0 ì b > 0

This formula reflects the modulation property of the Fourier cosine transform.

Parity

FctB f Ht + aL + f H-t - aL
2

-
f Ht - aL - f Ha - tL

2
F HzL � sinHa zL HFst@ f HtLD HzLL �; a Î R

This formula shows how the Fourier cosine transform can be applied to the difference between the even part of

f Ht + aL and the odd part of f Ht - aL.
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FctB f Ht + aL - f H-t - aL
2

+
f Ht - aL + f Ha - tL

2
F HzL � cosHa zL HFct@ f HtLD HzLL �; a Î R

This formula shows how the Fourier cosine transform can be applied to the sum of the even part of f Ht - aL and the

odd part of f Ht + aL.
Power scaling

FctAt2 n f HtLE HzL � H-1Ln
¶2 n HFct@ f HtLD HzLL

¶z2 n
�; n Î N+

This formula shows that multiplication of a function by t2 n corresponds to the 2 nth derivative of the Fourier cosine

transform.

FctAt2 n+1 f HtLE HzL � H-1Ln
¶2 n+1 HFst@ f HtLD HzLL

¶z2 n+1
�; n Î N

This formula shows that multiplication of a function by t2 n+1 corresponds to the H2 n + 1Lth derivative of the Fourier

sine transform.

Derivative

FctA f H2 nLHtLE HzL � H-1Ln z2 n Fct@ f HtLD HzL -
2

Π
â
k=0

n-1 H-1Lk z2 k f H2 n-2 k-1LH0L �; lim
t®¥

f HkLHtL � 0 í 0 £ k £ 2 n - 1 í n Î N+

This formula shows that the Fourier cosine transform of an even-order derivative gives the product of the power

function with the Fourier cosine transform plus some even polynomial.

FctA f H2 n+1LHtLE HzL � H-1Ln z2 n+1 Fst@ f HtLD HzL -
2

Π
â
k=0

n-1 H-1Lk z2 k f H2 n-2 kLH0L �; lim
t®¥

f HkLHtL � 0 í 0 £ k £ 2 n í n Î N

This formula shows that the Fourier cosine transform of an odd-order derivative gives the product of a power

function with the Fourier sine transform plus some even polynomial.

Convolution related

FctBà
0

¥

f HΤL HgHt + ΤL + gH t - Τ¤LL â ΤF HzL � 2 Π HFct@ f HtLD HzLL HFct@gHtLD HzLL
This formula shows that the Fourier cosine transform of a convolution gives the product of Fourier cosine trans-

forms multiplied by 2 Π .

Integral

FctBà
t

¥

f HΤL â ΤF HzL �
1

z
 HFst@ f HtLD HzLL
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This formula shows that the Fourier cosine transform of an indefinite integral with a variable lower limit gives the

product of the Fourier sine transforms by 1 � z.

Limit at infinity

lim
z®¥

HFct@ f HtLD HzLL � 0

This Riemann–Lebesgue theorem shows that the Fourier cosine transform Fct@ f HtLD HzL converges to zero as z tends

to infinity for some classes of the function f HtL.
Relations with other integral transforms

With inverse Fourier cosine transform

FctAFcΤ
-1@ f HΤLD HtLE HzL � f HzL

This formula reflects the relation between the direct and the inverse Fourier cosine transforms. In the point z � z0,

where f HzL  has  a  jump discontinuity,  the  composition of  the  inverse  and the  direct  Fourier  cosine transforms

converges to the mean 1
2

Jlimz®z0
+ f HzL + limz®z0

- f HzLN.
With exponential Fourier transform

Fct@ f HtLD HzL � Fct@ f H-tL ΘH-tL + f HtL ΘHtLD HzL
This formula reflects the relation between the direct and the inverse exponential Fourier transforms.

With Laplace transform

Fct@ f HtLD HzL �
1

2 Π
 Lt@ f HtLD Hä zL +

1

2 Π
 Lt@ f HtLD H-ä zL

This formula represents the Fourier cosine transform through Laplace transforms.

Inverse Fourier cosine transform

Definition

Fct
-1@ f HtLD HzL �

2

Π
à

0

¥

f HtL cosHt zL â t

This formula is the definition of the inverse Fourier cosine transform of the function f  with respect to the variable

t. If the integral does not converge, the value of Fct
-1@ f HtLD HzL is defined in the sense of generalized functions.

Relations with other integral transforms

With Fourier cosine transform
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Fct
-1@ f HtLD HzL � Fct@ f HtLD HzL

This formula shows that the inverse Fourier cosine transform coincides with the direct Fourier cosine transform.

Fourier sine transform

Definition

Fst@ f HtLD HzL �
2

Π
à

0

¥

f HtL sinHt zL â t

This formula is the definition of the Fourier sine transform of the function f  with respect to the variable t. If the

integral does not converge, the value of Fst@ f HtLD HzL is defined in the sense of generalized functions.

General properties

Linearity

Fst@a f HtL + b gHtLD HzL � a Fst@ f HtLD HzL + b Fst@gHtLD HzL
This formula reflects the linearity of the Fourier sine transform.

Scaling

Fst@ f Ha tLD HzL �
1

a
 Fst@ f HtLD 

z

a
�; a > 0

This formula reflects the scaling property of the Fourier sine transform.

Modulation

Fst@cosHb tL f Ha tLD HzL �
1

2 a
Fst@ f HtLD 

z - b

a
+ Fst@ f HtLD 

z + b

a
�; a > 0 ì b > 0

This formula reflects the modulation property of the Fourier sine transform.

Fst@sinHb tL f Ha tLD HzL �
1

2 a
 Fct@ f HtLD 

z - b

a
- Fct@ f HtLD 

z + b

a
�; a > 0 ì b > 0

This formula reflects the modulation property of the Fourier sine transform.

Parity

FstB f Ht - aL + f Ha - tL
2

-
f Ht + aL - f H-t - aL

2
F HzL � sinHa zL HFct@ f HtLD HzLL �; a Î R

This formula shows how the Fourier sine transform can be applied to the difference between the even part of

f Ht - aL and the odd part of f Ht + aL.
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FstB f Ht + aL + f H-t - aL
2

+
f Ht - aL - f Ha - tL

2
F HzL � cosHa zL H Fst@ f HtLD HzLL �; a Î R

This formula shows how the Fourier sine transform can be applied to a sum of the even part of f Ht + aL and the odd

part of f Ht - aL.
Power scaling

FstAt2 n f HtLE HzL � H-1Ln
¶2 n HFst@ f HtLD HzLL

¶z2 n
�; n Î N+

This formula shows that multiplication of a function by t2 n  corresponds to the 2 nth  derivative of the Fourier sine

transform.

FstAt2 n+1 f HtLE HzL � H-1Ln+1
¶2 n+1 HFct@ f HtLD HzLL

¶z2 n+1
�; n Î N

This formula shows that multiplication of a function by t2 n+1 corresponds to the H2 n + 1Lth derivative of the Fourier

cosine transform.

Derivative

FstA f H2 nLHtLE HzL � H-1Ln z2 n Fst@ f HtLD HzL +
2

Π
â
k=0

n-2 H-1Lk z2 k+1 f H2 n-2 k-2LH0L �; lim
t®¥

f HkLHtL � 0 í 0 £ k £ 2 n - 1 í n Î N+

This formula shows that the Fourier sine transform of an even-order derivative gives the product of the power

function and the Fourier sine transform plus some odd-order polynomial.

FstA f H2 n+1LHtLE HzL � H-1Ln-1 z2 n+1 Fct@ f HtLD HzL +
2

Π
â
k=0

n-1 H-1Lk z2 k+1 f H2 n-2 k-1LH0L �; lim
t®¥

f HkLHtL � 0 í 0 £ k £ 2 n í n Î N

This formula shows that the Fourier  sine transform of an odd-order derivative gives the product of the power

function and the Fourier cosine transform plus some odd-order polynomial.

Convolution related

FstBà
0

¥

f HΤL HgH t - Τ¤L - gHt + ΤLL â ΤF HzL � 2 Π H Fst@ f HtLD HzLL HFct@gHtLD HzLL
This formula shows that the Fourier sine transform of a convolution gives the product of the Fourier sine and the

Fourier cosine transforms multiplied by 2 Π .

Integral

FstBà
t

¥

f HΤL â ΤF HzL � -
1

z
 HFct@ f HtLD HzL - Fct@ f HtLD H0LL
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This formula shows that the Fourier sine transform of an indefinite integral with a variable lower limit gives the

difference of the Fourier cosine transforms in z and 0 multiplied by -1 � z.

Limit at infinity

lim
z®¥

HFst@ f HtLD HzLL � 0

The Riemann–Lebesgue theorem shows that the Fourier sine transform Fst@ f HtLD HzL converges to zero as z tends to

infinity for some classes of function f HtL.
Relations with other integral transforms

With inverse Fourier sine transform

FstAFsΤ
-1@ f HΤLD HtLE HzL � f HzL

This formula reflects the relation between the direct and the inverse Fourier sine transforms. At the point z � z0,

where f HzL has a jump discontinuity, the composition of the inverse and the direct Fourier sine transforms con-

verges to the mean 1
2

Jlimz®z0
+ f HzL + limz®z0

- f HzLN.
With exponential Fourier transform

Fst@ f HtLD HzL � ä Fst@ f H-tL ΘH-tL - f HtL ΘHtLD HzL
This formula represents the Fourier sine transform through the exponential Fourier transform.

With Laplace transform

Fst@ f HtLD HzL �
ä

2 Π
 Lt@ f HtLD Hä zL -

ä

2 Π
 Lt@ f HtLD H-ä zL

This formula represents the Fourier sine transform through the Laplace transforms.

Inverse Fourier sine transform

Definition

Fst
-1@ f HtLD HzL �

2

Π
à

0

¥

f HtL sinHt zL â t

This formula is the definition of the inverse Fourier sine transform of the function f  with respect to the variable t. If

the integral does not converge, the value of Fst
-1@ f HtLD HzL is defined in the sense of generalized functions.

Relations with other integral transforms

With Fourier sine transform
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Fst
-1@ f HtLD HzL � Fst@ f HtLD HzL

This formula shows that the inverse Fourier sine transform coincides with the direct Fourier sine transform.

Laplace transform

Definition

Lt@ f HtLD HzL � à
0

¥

f HtL ã-t z â t

This formula is the definition of the Laplace transform of the function f  with respect to the variable t.   If the

integral does not converge, the value of Lt@ f HtLD HzL is defined in the sense of generalized functions.

General properties

Linearity

Lt@a f HtL + b gHtLD HzL � a Lt@ f HtLD HzL + b Lt@gHtLD HzL
This formula reflects the linearity of the Laplace transform.

Shift

LtAã-a t f HtLE HzL � Lt@ f HtLD Hz + aL
This shift theorem shows that the Laplace transform of a product with an exponential function gives the Laplace

transform in the shifted point.

Power scaling

Lt@t f HtLD HzL � -
¶n HLt@ f HtLD HzLL

¶zn

This formula shows that differentiation of a Laplace transform corresponds to multiplication of the original func-

tion by -t.

Lt@tn f HtLD HzL � H-1Ln
¶n HLt@ f HtLD HzLL

¶zn
�; n Î N+

This formula shows that differentiation of a Laplace transform of order n  corresponds to multiplication of the

original function by H-tLn.

Product

Lt@ f HtL gHtLD HzL �
1

2 Π ä
 à

Γ-ä ¥

Γ+ä ¥HLt@ f HtLD HΤLL HLt@gHtLD Hz - ΤLL â Τ �; ImHΓL � 0
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This formula represents  the Laplace transform of a product f HtL  and gHtL  through the contour integral along a

vertical line from the corresponding product of Laplace transforms. 

Derivative

LtA f HnLHtLE HzL � zn Lt@ f HtLD HzL - â
k=0

n-1

zn-k-1 f HkLH0L
This time differentiation relation gives the representation for the Laplace transform of the first derivative.

LtA f HnLHtLE HzL � zn Lt@ f HtLD HzL - â
k=0

n-1

zn-k-1 f HkLH0L
This time differentiation relation gives the representation of the Laplace transform of the nth derivative.

Integral

LtBà
0

t

f HΤL â ΤF HzL �
1

z
 Lt@ f HtLD HzL

This formula shows that the Laplace transform of an indefinite integral gives the product of the reciprocal function

of z by the Laplace transform of the function.

LtBà
0

t f HΤL Ht - ΤLn-1

Hn - 1L !
 â ΤF HzL �

1

zn
 HLt@ f HtLD HzLL �; n Î N+

This  formula  shows  that  the  Laplace  transform  of  the  repeated  indefinite  integral

Ù0

xÙ0

t
¼ Ù0

t
f HtL â t â t¼ â t

n-times

� Ù0

x
f HtL Hx-tLn-1

Hn-1L!
 â t gives the product of the power function z-n on Laplace transform.

Convolution

LtBà
0

t

f Ht - ΤL gHΤL â ΤF HzL � HLt@ f HtLD HzLL HLt@gHtLD HzLL
The convolution theorem  or  convolution  (Faltung)  theorem for  the  Laplace  transform shows  that  the  Laplace

transform of a convolution is equal to the product of Laplace transforms of the convoluted functions.

Limit at infinity

lim
z®¥

z HLt@ f HtLD HzLL � lim
t®0+

f HtL
The initial value theorem shows that limit at infinity of the Laplace transform multiplied by z is the one-sided limit

of the initial function at zero.

Limit at zero
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lim
z®0

z HLt@ f HtLD HzLL � lim
t®¥

f HtL
The final value theorem shows that the limit at zero of the Laplace transform multiplied by z is the limit of the

initial function at infinity.

Sum

LtB â
k=-¥

¥

f Ht - L kLF HzL �
1

1 - ã-z L
 Lt@ΘHtL ΘHL - tL f HtLD HzL

Relations with other integral transforms

With inverse Laplace transform

LtALΓ;Τ
-1 @ f HΤLD HtLE HzL � f HzL

This formula reflects the relation between the direct and the inverse Laplace transforms.

LtALΤ
-1@ f HΤLD HtLE HzL � f HzL

This formula reflects the relation between the direct and the inverse Laplace transforms.

With exponential Fourier transform

Lt@ f HtLD HzL � 2 Π HFt@ΘHtL f HtLD Hä zLL
This formula shows how the Laplace transform can be represented through the exponential Fourier transform.

With Mellin transform

Lt@ f HtLD HzL � Mt@ΘH1 - tL f H-logHtLLD HzL
This formula shows how the Laplace transform can be represented through the Mellin transform.

With Z-transform

LtB â
n=-¥

¥

f HnL ∆Ht - nLF HzL � Zn@ f HnLD HãzL
This formula shows how the Laplace transform can be represented through the Z-transform.

Inverse Laplace transform

Definition

LΓ;t
-1@ f HtLD HpL �

1

2 Π ä
 à

Γ-ä ¥

Γ+ä ¥

f HtL ãt p â t
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This formula is the definition of the inverse Laplace integral transform of the function f  with respect to the variable

t.

Lt
-1@ f HtLD HpL �

1

2 Π ä
 à

Γ-ä ¥

Γ+ä ¥

f HtL ãt p â t

This formula is the definition of the inverse Laplace integral transform of the function f  with respect to the variable

t.

LΓ;t
-1@ f HtLD HpL � lim

k®¥

H-1Lk

k !

k

p

k+1

 Lt
H0,0,kL@ f HtLD 

k

p

This formula is the Post–Widder form of the inverse Laplace integral transform of the function f  with respect to the

variable t.

Multiple Laplace transform

Definition

L8t1 ,t2<@ f Ht1, t2LD Hz1, z2L � à
0

¥à
0

¥

f Ht1, t2L ã-t1 z1-t2 z2  â t1 â t2

This formula is the definition of the double Laplace transform of the function f  with respect to the variables t1, t2.

L9t1 ,t2 ,¼,tn=@ f  Ht1, t2, ¼, tnLD Hz1, z2, ¼, znL � à
0

¥à
0

¥

¼ à
0

¥

f Ht1, t2, ¼, tnL ã-t1 z1-t2 z2-¼-tn  zn  â tn ¼ â t2 â t1

n-times

This formula is the definition of multiple Laplace transforms of the function f Ht1, t2, ¼, tnL with 
respect to the variables  t1, t2,…, tn over Rn.

Mellin transform

Definition

Mt@ f HtLD HzL � à
0

¥

f HtL tz-1 â t

This formula is the definition of the Mellin transform of the function f  with respect to the variable t. If the integral

does not converge, the value of Mt@ f HtLD HzL is defined in the sense of generalized functions. Usually, the integral

converges in the strip Α < Re HzL < Β, where Α and Β depend on the function f HtL and can assume the values ± ¥.

For example, MtAΘHt - aL tbE HzL � - ab+z

b+z
�; ReHzL < -ReHbL.

General properties

Linearity

Mt@a f HtL + b gHtLD HzL � a Mt@ f HtLD HzL + b Mt@gHtLD HzL
This formula reflects the linearity of the Mellin transform.
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Scaling

Mt@ f Ha tLD HzL � a-z Mt@ f HtLD HzL �; a > 0

The operation reflects the scaling of the original variable t by a positive number a in a Mellin transform.

Power

MtB f
1

t
F HzL � Mt@ f HtLD H-zL

This formula reflects the Mellin transform of the function f H1 � tL.
Mt@ f HtaLD HzL �

1

 a¤  Mt@ f HtLD 
z

a
�; a ¹ 0 ß a Î R

The operation provides the Mellin transform of the original variable t raised to a real power a.

Shifting

Mt@ta f HtLD HzL � Mt@ f HtLD Hz + aL
The shift theorem gives the Mellin transform of a product of the original function by some power of t.

Mt@logaHtL f HtLD HzL �
¶k Mt@ f HtLD HzL

¶zk

The operation gives the Mellin transform of a product of the original function by a power of logHtL.
Derivative

MtA f HnLHtLE HzL � H1 - zLn Mt@ f HtLD Hz - nL �; lim
t®0

tz-k-1 f HkLHtL � 0 í 0 £ k £ n - 1 í n Î N+

This formula shows that the Mellin transform of an nth derivative gives the product of a polynomial and the Mellin

transform of the function.

MtB t
¶

¶ t

n

 f HtLF HzL � H-1Ln zn Mt@ f HtLD HzL �; n Î N+

This formula shows that the Mellin transform of It ¶
¶t

Mn
 f HtL gives the product of a power function and the Mellin

transform.

MtB ¶

¶ t
 t

n

 f HtLF HzL � H1 - zLn Mt@ f HtLD HzL �; n Î N+

This formula shows that the Mellin transform of I ¶
¶t

 tMn
 f HtL gives the product of the power function and the Mellin

transform.
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MtB ¶n Htn f HtLL
¶ tn

F HzL � H1 - zLn Mt@ f HtLD HzL �; n Î N+

This  formula  shows  that  the  Mellin  transform of  
¶nHtn f HtLL

¶tn  gives  the  product  of  a  polynomial  and  the  Mellin

transform.

MtAtn f HnLHtLE HzL � H-1Ln HzLn Mt@ f HtLD HzL �; lim
t®0

tz-k-1 f HkLHtL � 0 í 0 £ k £ n - 1 í n Î N+

This  formula  shows  that  the  Mellin  transform of  tn f HnLHtL  gives  the  product  of  a  polynomial  and  the  Mellin

transform.

Integral

MtBà
0

t

f HΤL â ΤF HzL � -
1

z
Mt@ f HtLD Hz + 1L

This formula shows that the Mellin transform of an indefinite integral gives the product of -1 � z and the Mellin

transform in the shifted point.

MtBà
0

t

¼ à
0

Τ3à
0

Τ2

f HΤ1L â Τ1 â Τ2 ¼ â ΤnF HzL �
H-1Ln

HzLn

Mt@ f HtLD Hz + nL
This formula shows how the Mellin transform of a repeated indefinite integral gives the product of a rational

function and the Mellin transform in the shifted point.

MtBà
t

¥

f HΤL â ΤF HzL �
1

z
Mt@ f HtLD Hz + 1L

This formula shows that the Mellin transform of the indefinite integral with a variable lower limit gives the product

of 1 � z and the Mellin transform in the shift point.

MtBà
t

¥

¼ à
Τ3

¥à
Τ2

¥

f HΤ1L â Τ1 â Τ2 ¼ â ΤnF HzL �
1

HzLn

Mt@ f HtLD Hz + nL
This formula demonstrates how the Mellin transform of a repeated indefinite integral with variable lower limits

gives the product of a rational function amd the Mellin transform in the shifted point.

Convolution

MtBà
0

¥ 1

Τ
 f HΤL g

t

Τ
 â ΤF HzL � HMt@ f HtLD HzLL HMt@gHtLD HzLL

The Mellin convolution theorem shows that the Mellin transform of a Mellin convolution equals the product of the

Mellin transforms.

MtBta à
0

¥

Τb-1 f HΤcL gHΤe tL â ΤF HzL �
1

 c¤  Mt@ f HtLD 
b - e Ha + zL

c
 HMt@gHtLD Ha + zLL �; c ¹ 0 ß c Î R ß e Î R
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The generalized Mellin convolution theorem shows that the Mellin transform of the generalized Mellin convolution

is equal to the product of the Mellin transforms.

Parseval

à
0

¥

f Hz ΤL gHΤL â Τ �
1

2 Π ä
 à

Γ-ä ¥

Γ+ä ¥HMt@ f HtLD HsLL HMt@gHtLD H1 - sLL z-s â s

This formula is called Mellin–Parseval’s formula.

à
0

¥

f HΤL gHΤL â Τ �
1

2 Π ä
 à

Γ-ä ¥

Γ+ä ¥HMt@ f HtLD HsLL HMt@gHtLD H1 - sLL â s

This formula is called Parseval’s formula.

à
0

¥

Τa f Hb ΤcL gHd ΤeL â Τ �
b

a+1

c

e  c¤  
1

2 Π ä
 à

Γ-ä ¥

Γ+ä ¥

Mt@ f HtLD 
a + s + 1

c
 Mt@gHtLD -

s

e
d1�e b

-
1

c

s

 â s �; c ¹ 0 ì c Î R ì d Î R

This representation can be used for evaluation of the general class of integrals from products of Meijer G functions.

Relations with other integral transforms

With inverse Mellin transform

MtAMΓ;Τ
-1 @ f HΤLD HtLE HsL � f HsL

This formula reflects the relation between the direct and the inverse Mellin transforms. The following theorem

holds: if an analytical function f HsL  satisfies the restriction   f HsL¤ < K   s¤-2  in the strip Α < Re HzL < Β with some

constant K, then the integral MΓ;s
-1@ f HsLD HtL is a continuous function of the variable t and is its Mellin transform in

this strip.

With exponential Fourier transform

Mt@ f HtLD HzL � 2 Π IFtA f Iã-tME Hä zLM
This formula shows how the Mellin transform can be represented through the exponential Fourier transform.

With Fourier cosine and sine transforms

Mt@ f HtLD HzL � 2 Π FctB f Hã-tL + f HãtL
2

F Hä zL + ä 2 Π FstB f Hã-tL - f HãtL
2

F Hä zL
This formula shows how the Mellin transform can be represented through the cosine and the sine Fourier trans-

forms from the even and odd parts of the function.

With Mellin transform
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Lt@ f HtLD HzL � Mt@ΘH1 - tL f H-logHtLLD HzL
This formula shows how the Laplace transform can be represented through the Mellin transform.

Inverse Mellin transform

Definition

MΓ;s
-1@ f HsLD HtL �

1

2 Π ä
 à

Γ-ä ¥

Γ+ä ¥

f HsL t-s â s

This formula is the definition of the inverse Mellin integral transform of the function f  with respect to 
the variable s. If the integral does not converge, the value of MΓ;s

-1@ f HsLD HtL is defined in the sense of 
generalized functions. The condition on Γ usually has the following form: Α < Γ � ReHsL < Β, which 
represents a vertical strip of convergence for the integral.

Changing the vertical strip of integration Α < ReHsL < Β leads to a change in the original function 
MΓ;s

-1@ f HsLD HtL. For example, in the case of gamma function f HsL � GHsL you have 

MΓ;s
-1@GHsLD HtL � ã-t �; Γ > 0 and MΓ,s

-1@GHsLD HtL � ã-t - 1 �; -1 < Γ < 0.

Multiple Mellin transform

Definition

M8t1 ,t2<@ f  Ht1, t2LD Hz1, z2L � à
0

¥à
0

¥

f Ht1, t2L t1
z1-1

t2
z2-1

 â t1 â t2

This formula is the definition of the double Mellin transform of the function f Ht1, t2L with respect to 
the variables  t1, t2.

M9t1 ,t2 ,¼,tn=@ f  Ht1, t2, ¼, tnLD Hz1, z2, ¼, znL � à
0

¥à
0

¥

¼ à
0

¥

f Ht1, t2, ¼, tnL t1
z1-1

 t2
z2-1

 ¼tn
zn-1

 â tn ¼ â t2 â t1

n-times

This formula is the definition of the multiple Mellin transform of the function f Ht1, t2, ¼, tnL with 
respect to the variables  t1, t2,…, tn.

General properties

Convolution

M8t1 ,t2<Bà
0

¥ f HΤL
Τ

 g1

t1

Τ
 g2

t2

Τ
 â ΤF Hz1, z2L � HMt@ f HtLD Hz1 + z2LL IMt1 @g1Ht1LD Hz1LM IMt2 @g2Ht2LD Hz2LM

The generalized  Mellin  convolution  theorem  shows  that  the  double  Mellin  transform of  a  Mellin  generalized

convolution equals the product of the Mellin transforms in the corresponding points.

M9t1 ,t2 ,¼,tn=Bà
0

¥ f HΤL
Τ

 ä
k=1

n

gk

tk

Τ
 â ΤF Hz1, z2, ¼, znL � Mt@ f HtLD â

k=1

n

zk  ä
k=1

n

Mtk @gkHtkLD HzkL
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The generalized Mellin convolution theorem  shows that the multiple Mellin transform of a Mellin generalized

convolution equals the product of the Mellin transforms in the corresponding points.

Hankel transform

Definition

HΝ;t@ f HtLD HzL � à
0

¥

f HtL t z JΝHt zL â t

This formula is the definition of the Hankel integral transform of the function f  with respect to the variable t. If this

integral does not converge, the value of HΝ;t@ f HtLD HzL is defined in the sense of generalized functions.

General properties

HΝ;t@HΝ;Τ@ f HΤLD HtLD HzL � f HzL �; ReHΝL > -
1

2

This formula shows that the inverse Hankel integral transform coincides with the direct Hankel integral transform

under the restriction ReHΝL > - 1
2
.

Hilbert transform

Definition

Ht@ f HtLD HxL �
1

Π
 P à

-¥

¥ f HtL
t - x

 â t �; x Î R

This formula is the definition of the Hilbert transform of the function f  with respect to the variable t for real x.

Inverse Hilbert transform

Definition

Ht
-1@ f HtLD HxL � -

1

Π
 P à

-¥

¥ f HtL
t - x

 â t �; x Î R

This formula is the definition of the inverse Hilbert transform of the function f  with respect to the variable t for

real x. It coincides with the direct Hilbert transform multiplied by -1.

Relations with other integral transforms

With Hilbert transform

Ht
-1@ f HtLD HxL � -Ht@ f HtLD HxL

Z-transform

Definition
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Zn@ f HnLD HzL � â
n=0

¥

f HnL z-n

This formula is the definition of the Z-transform of the function f HnL with respect to the discrete variable n at the

complex point z.

General properties

Linearity

Zn@a f HnL + b gHnLD HzL � a HZn@ f HnLD HzLL + b HZn@gHnLD HzLL
This formula reflects the linearity of the Z-transform.

Shifting

Zn@ f Hn - mLD HzL � z-m HZn@ f HnLD HzLL + z-m â
k=1

m

f H-kL zk

This formula reflects the shifting property of the Z-transform.

Zn@ f Hn - mLD HzL � z-m HZn@ f HnLD HzLL �; f H-1L � f H-2L � ¼ � f H-mL � 0

This formula reflects the shifting property of the Z-transform.

Zn@ f Hm + nLD HzL � zm HZn@ f HnLD HzLL - zm â
k=0

m-1

f HkL z-k

This formula reflects the shifting property of the Z-transform.

Scaling

Zn@an f HnLD HzL � Zn@ f HnLD 
z

a

This formula reflects the scaling property of the Z-transform.

Zn@nm f HnLD HzL � H-1Lm z
¶

¶z

m

 HZn@ f HnLD HzLL �; m Î N+

This formula shows that multiplication of a function f HnL by nm leads to repeated differentiation of the Z-transform.

ZnAHnLm f HnLE HzL � H-zLm
¶m HZn@ f HnLD HzLL

¶zm
�; m Î N+

This formula shows that multiplication of a function f HnL by HnLm gives the product of H-zLm and the mth derivative

of the Z-transform.
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Product

Zn@ f HnL gHnLD HzL � à
L

1

t
 HZn@ f HnLD HtLL Zn@gHnLD 

z

t
 â t

The Z-transform of a product of f HnL  and gHnL is represented through a contour integral along a simple circle-type

contour L  encircling the origin t � 0 counterclockwise.  All  the singular points of the function Zn@ f HnLD HtL  are

located inside the contour. All the singular points of the function Zn@gHnLD I z
t

M  are located outside the contour.

Parseval

â
n=0

¥

f HnL gHnL � à
L

1

t
 HZn@ f HnLD HtLL Zn@gHnLD 

1

t
 â t

The Parseval theorem follows from the previous relation for z � 1. The integration is performed along a simple

circle-type  contour  L  encircling  the  origin  t � 0  counterclockwise.  All  the  singular  points  of  the  function

Zn@ f HnLD HtL are located inside the contour. All the singular points of the function Zn@gHnLD I z
t

M  are located outside

the contour.

Correlation

â
k=0

¥

f HkL gHk - nL � à
L
tn-1 HZn@ f HnLD HtLL Zn@gHnLD 

1

t
 â t �; n Î N+

The property is called the cross correlation property of the Z-transform.

Convolution

ZnBâ
k=0

¥

f HkL gHn - kLF HzL � HZn@ f HnLD HzLL HZn@gHnLD HzLL �; gH-mL � 0 ì m Î N+

The convolution theorem  for the Z-transform shows that the Z-transform of a convolution sum is equal to the

product of the corresponding Z-transforms.

Limit at infinity

lim
z®¥

Zn@ f HnLD HzL � f H0L
The analog of the Riemann-Lebesgue theorem shows that the Z-transform Zn@ f HnLD HzL at infinity tends to the initial

value f H0L.
lim
z®¥

z HZn@ f HnLD HzLL � f H1L �; f H0L � 0

This formula shows that the Z-transform Zn@ f HnLD HzL at infinity behaves as f H0L +
f H1L

z
.
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Limit at one

lim
z®1

Hz - 1L HZn@ f HnLD HzLL � lim
n®¥

f HnL
This formula shows that the expression Hz - 1L Zn@ f HnLD HzL near point z � 1 behaves as limn®¥ f HnL.

Derivative by parameter

ZnB ¶ f Hn, aL
¶a

F HzL �
¶HZn@ f Hn, aLD HzLL

¶a

This formula reflects the differentiation by parameter property of the Z-transform.

Limit by parameter

ZnB lim
a®a0

f Hn, aLF HzL � lim
a®a0

Zn@ f Hn, aLD HzL
This formula reflects the evaluation limit by parameter property of the Z-transform.

Integration by parameter

ZnBà
a

b

f Hn, tL â tF HzL � à
a

b

Zn@ f Hn, tLD HzL â t

This formula reflects the integration by parameter property of the Z-transform.

Relations with other integral transforms

With inverse Z-transforms

ZnAZt
-1@ f HtLD HnLE HzL � f HzL

This formula reflects the relation between the direct and the inverse Z-transforms.

Inverse Z-transform

Definition

Zt
-1@ f HtLD HnL �

1

2 Π ä
à

L
f HtL tn-1 â t

This formula is the definition of the inverse Z-transform of the function f HtL with respect to the variable t  at the

discrete point n. The contour integral is performed along a simple circle-type contour L encircling the origin t � 0

counterclockwise.

Weber transform

Definition
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WΝ;t@ f HtLD HzL � à
1

¥

t f HtL HJΝHt zL YΝHzL - YΝHt zL JΝHzLL â t

This formula is the definition of the Weber integral transform of the function f  with respect to the variable t.

Relations with other integral transforms

With inverse Weber transform

WΝ;t
-1@WΝ;Τ@ f HΤLD HtLD HzL � f HzL

The  formula shows that the composition of the direct and the inverse Weber integral transforms gives the original

function in a point of continuity.

Inverse Weber transform

Definition

WΝ;t
-1@ f HΝ, tLD HzL � à

0

¥ t f HΝ, tL
JΝHtL2 + YΝHtL2

HJΝHt zL YΝHtL - YΝHt zL JΝHtLL â t

This formula gives the formula for the inverse Weber integral transform.

Summation

Finite summation

â
k=0

n

ak � a1 + a2 + ¼ + an

This formula is the definition of the finite sum.

â
k=0

n

ak � â
k=0

m

ak + â
k=0

n-m-1

ak+m+1 �; m £ n

This formula shows how a finite sum can be split into two finite sums.

â
k=0

n HΑ akL � Α â
k=0

n

ak

This formula shows that a constant factor in a summand can be taken out of the sum.

â
k=0

n

ak ± â
j=0

n

b j � â
k=0

n

ak ± bk

This formula reflects the linearity of the finite sums.
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â
k=0

n

logHakL � log ä
k=0

n

ak �; -Π < â
k=0

n

argHakL £ Π

This formula represents the concept that the sum of logs is equal to the log of the product, which is correct under

the given restriction.

â
k=0

n

logHzkL � log ä
k=0

n

zk - 2 Π ä
Π - Úk=0

n argHzkL
2 Π

�; n Î N

This general formula is correct without any restrictions.

a0

2
+ â

k=1

n H ak  cosHk xL + bk  sinHk xLL �
1

Π
 à

-Π

Π f Hx - tL
2 sinI t

2
M sin n +

1

2
t  â t �; ak �

1

Π
 à

-Π

Π

f HtL cosHk tL â t í bk �
1

Π
 à

-Π

Π

f HtL sinHk tL â t

This formula is called the Dirichlet formula for a Fourier series.

â
k=0

n

ak � â
k=0

f n

2
v

a2 k + â
k=0

f n-1

2
v
a2 k+1

In this formula, the sum is divided into the sums of the even and odd terms.

â
k=0

n

ak � â
k=0

f n

3
v

a3 k + â
k=0

f n-1

3
v
a3 k+1 + â

k=0

f n-2

3
v
a3 k+2

In this formula, the sum of ak is divided into three sums with the terms a3 k,  a3 k+1, and a3 k+2.

â
k=0

n

ak � â
k=0

f n

4
v

a4 k + â
k=0

f n-1

4
v
a4 k+1 + â

k=0

f n-2

4
v
a4 k+2 + â

k=0

f n-3

4
v
a4 k+3

In this formula, the sum of ak is divided into four sums with the terms a4 k,  a4 k+1, a4 k+2, and a4 k+3.

â
k=0

n

ak � â
j=0

m-1 â
k=0

f n- j

m
v
am k+ j

In this formula, the sum of ak is divided into m sums with the terms amk,  amk+1,…, amk+m-2, and amk+m-1.

â
k=0

n

ak â
j=0

n

b j � â
k=0

n â
j=0

n

ak b j

This formula describes the multiplication rule for finite sums.

â
k=1

n

ak bk

2

� â
k=1

n

ak
2 â

k=1

n

bk
2 - â

k=1

n â
j=k+1

n Iak b j - a j bkM2

This formula is called Lagrange's identity.
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Infinite summation (series)

â
k=0

¥

ak � lim
n®¥

â
k=0

n

ak � "Ε,Ε>0 $∆,∆>0 "n,n>∆ â
k=0

¥

ak - â
k=0

n

ak < Ε

This formula reflects the definition of the convergent infinite sums (series) Úk=0
¥ ak. The sum Úk=0

¥ ak  converges

absolutely  if  ak � OHk-rL �; r > 1.  If  ak ® 0 this  series  can converge conditionally;  for  example,  Úk=0
¥ H-1Lk � kr

converges conditionally if 0 < r £ 1, and absolutely for r > 1. If limk®¥ ak ¹ 0, the series Úk=0
¥ ak does not converge

(it is a divergent series).

â
k=0

¥

ak � â
k=0

m

ak + â
k=0

¥

ak+m+1

This formula shows one way to separate an arbitrary finite sum from an infinite sum.

â
k=0

¥ HΑ akL � Α â
k=0

¥

ak

This formula shows that a constant factor in the summands can be taken out of the sum.

â
k=0

¥

ak ± â
j=0

¥

b j � â
k=0

¥

ak ± bk

This formula reflects the linearity of summation.

â
k=0

¥

logHakL � log ä
k=0

¥

ak �; -Π < â
k=0

¥

argHakL £ Π

This formula reflects the statement that the sum of the logs is equal to the log of the product, which is correct under

the shown restrictions.

â
k=0

¥

logHzkL � log ä
k=0

¥

zk - 2 Π ä
Π - Úk=0

¥ argHzkL
2 Π

This formula is correct if all sums are convergent.

a0
2

2
+ â

k=1

¥ Iak
2 + bk

2M �
1

Π
 à

-Π

Π

f HtL2 â t �; ak �
1

Π
 à

-Π

Π

f HtL cosHk tL â t í bk �
1

Π
 à

-Π

Π

f HtL sinHk tL â t

Parseval's lemma reflects completeness in the trigonometric system 8cos Hk tL, sin Hk tL<.
â
k=0

¥

ak � â
k=0

¥

a2 k + â
k=0

¥

a2 k+1

In this formula, the sum is split into the sums of even and odd terms.
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â
k=0

¥

ak � â
k=0

¥

a3 k + â
k=0

¥

a3 k+1 + â
k=0

¥

a3 k+2

In this formula, the sum of ak is split into three sums with the terms a3 k,  a3 k+1, and a3 k+2.

â
k=0

¥

ak � â
k=0

¥

a4 k + â
k=0

¥

a4 k+1 + â
k=0

¥

a4 k+2 + â
k=0

¥

a4 k+3

In this formula, the sum of ak is split into four sums with the terms a4 k,  a4 k+1, a4 k+2, and a4 k+3.

â
k=0

¥

ak � â
j=0

m-1 â
k=0

¥

am k+ j

In this formula, the sum of ak is split into m sums with the terms amk,  amk+1,…, amk+m-2, and amk+m-1.

â
k=1

¥

ak � â
j=1

m â
k=0

¥

a j+k m �; m Î N+

In this formula, the sum of ak is split into m sums with the terms amk+1,  amk+2,…, amk+m-1, and am k+m.

â
k=0

¥

ak â
j=0

¥

b j � â
k=0

¥ â
j=0

¥

ak b j

This formula describes the multiplication rule for a series.

â
k=1

¥

ak bk

2

� â
k=1

¥

ak
2 â

k=1

¥

bk
2 - â

k=1

¥ â
j=k+1

¥ Iak b j - a j bkM2

This formula is called Lagrange's identity.

Double finite summation

â
k=0

m â
j=0

n

ak, j � â
j=0

n â
k=0

m

ak, j

This formula reflects the commutativity property of finite double sums over the rectangle 0 £ k £ m, 0 £ j £ n.

â
k=0

n â
j=0

n

ak, j � â
m=0

n

bm �; bm � â
j=0

m

am, j + â
j=0

m-1

a j,m

This formula shows how to rewrite the double sum through a single sum.

â
k=0

m â
j=0

k

ak, j � â
j=0

m â
k= j

m

ak, j

This formula shows summation over the triangle 0 £ j £ k £ m in a different order.
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â
k=0

m â
j=0

f k

2
v

ak, j � â
j=0

m â
k=0

m-2 j

a2 j+k, j

This formula reflects summation over the triangle 0 £ j £ e k
2

u £ m in a different order.

â
k=0

m â
j=0

f k-1

2
v
ak, j � â

j=0

m â
k=0

m-2 j-1

a2 j+k+1, j

This formula reflects summation over the triangle 0 £ j £ e k-1
2

u £ m in a different order.

â
k=0

m â
j=k

m

ak, j � â
j=0

m â
k=0

j

ak, j

This formula reflects summation over the triangle 0 £ k £ j £ m in a different order.

â
k=0

m â
j=k

p

ak, j � â
j=0

m â
k=0

j

ak, j + â
j=m+1

p â
k=0

m

ak, j �; p ³ m

This formula reflects summation over the trapezium (quadrangle) 0 £ k £ m, 0 £ k £ j £ p  in a different order.

â
k=0

m â
j=f k

2
v

p

ak, j � â
j=0

f m

2
v-1 â

k=0

2 j+1

ak, j + â
j=f m

2
v

p â
k=0

m

ak, j �; p ³ m

This formula reflects summation over the trapezium (quadrangle) 0 £ k £ m, 0 £ e k
2

u £ j £ p  in a different order.

â
k=0

m â
j=f k+1

2
v

p

ak, j � â
j=0

f m-1

2
v â

k=0

2 j

ak, j + â
j=f m+1

2
v

p â
k=0

m

ak, j �; p ³ m

This formula reflects summation over the trapezium (quadrangle) 0 £ k £ m, 0 £ e k+1
2

u £ j £ p  in a different order.

â
k=0

m â
j=2 k

p

ak, j � â
j=0

2 m-1 â
k=0

f j

2
v

ak, j + â
j=2 m

p â
k=0

m

ak, j �; p ³ 2 m

This formula reflects summation over the trapezium (quadrangle) 0 £ k £ m, 0 £ 2 k £ j £ p  in a different order.

â
k=0

m â
j=r k

p

ak, j � â
j=0

r m-1 â
k=0

f j

r
v

ak, j + â
j=r m

p â
k=0

m

ak, j �; p ³ r m

This formula reflects summation over the trapezium (quadrangle) 0 £ k £ m, 0 £ r k £ j £ p, r Î N
+  in a different

order.
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Double infinite summation

â
k=0

¥ â
j=0

¥

ak, j � â
j=0

¥ â
k=0

¥

ak, j

This formula reflects the commutative property of infinite double sums by the quadrant 0 £ k, 0 £ j. It takes place

under restrictions like ak, j � OIIk2 + l2M-rM �; r > 1, which provide absolute convergence of this double series.

â
k=0

¥ â
j=0

¥

ak, j � â
m=0

¥

bm �; bm � â
j=0

m

am, j + â
j=0

m-1

a j,m

This formula shows how to rewrite the double sum through a single sum.

â
k=0

¥ â
j=0

¥

ak, j � â
j=0

¥ â
k=0

j

ak, j-k

This formula shows how to change the order in a double sum.

â
k=0

¥ â
j=0

¥

ak, j � â
j=0

¥ â
k=0

j

ak, j-k

This formula shows how to change the order in a double sum.

â
k=0

¥ â
j=0

k

ak, j � â
j=0

¥ â
k= j

¥

ak, j

This formula reflects summation over the infinite triangle 0 £ j £ k in a different order.

â
k=0

¥ â
j=0

k+m

ak, j � â
j=0

¥ â
k=0

¥

ak, j + â
j=m+1

¥ â
k= j-m

¥

ak, j

This formula reflects summation over the infinite trapezium 0 £ j £ k + m ì m > 0 in a different order.

â
k=0

¥ â
j=0

f k

2
v

ak, j � â
j=0

¥ â
k=0

¥

a2 j+k, j

This formula reflects summation over the infinite triangle 0 £ j £ e k
2

u in a different order.

â
k=0

¥ â
j=0

f k-1

2
v
ak, j � â

j=0

¥ â
k=0

¥

a2 j+k+1, j

This formula reflects summation over the infinite triangle 0 £ j £ e k-1
2

u in a different order.
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â
k=0

¥ â
j=k

¥

ak, j � â
j=0

¥ â
k=0

j

ak, j

This formula reflects summation over the infinite triangle 0 £ k £ j in a different order.

â
k=0

m â
j=k

¥

ak, j � â
j=0

m â
k=0

j

ak, j + â
j=m+1

¥ â
k=0

m

ak, j

This formula reflects summation over the infinite trapezium (quadrangle) 0 £ k £ m, 0 £ k £ j  in a different order.

â
k=0

m â
j=f k

2
v

¥

ak, j � â
j=0

f m

2
v-1 â

k=0

2 j+1

ak, j + â
j=f m

2
v

¥ â
k=0

m

ak, j

This formula shows the summation over the infinite trapezium (quadrangle) 0 £ k £ m í 0 £ e k
2

u £ j in a different

order.

â
k=0

m â
j=f k+1

2
v

¥

ak, j � â
j=0

f m-1

2
v â

k=0

2 j

ak, j + â
j=f m+1

2
v

¥ â
k=0

m

ak, j

This formula shows the summation over the trapezium (quadrangle) 0 £ k £ m í 0 £ e k+1
2

u £ j in a different order.

â
k=0

m â
j=2 k

¥

ak, j � â
j=0

2 m-1 â
k=0

f j

2
v

ak, j + â
j=2 m

¥ â
k=0

m

ak, j

This formula shows the summation over the trapezium (quadrangle) 0 £ k £ m, 0 £ 2 k £ j in a different order.

â
k=0

m â
j=r k

¥

ak, j � â
j=0

r m-1 â
k=0

f j

r
v

ak, j + â
j=r m

¥ â
k=0

m

ak, j

This formula shows summation over the trapezium (quadrangle) 0 £ k £ m, 0 £ r k £ j, r Î N
+ in a different order.

Triple infinite summation

â
k1=0

¥ â
k2=0

¥ â
k3=0

¥

ak1 ,k2 ,k3
� â

k3=0

¥ â
k1=0

k3 â
k2=0

k3-k1

ak1 ,k2 ,k3-k1-k2

This formula shows how to change the order of summation in a triple sum.

Multidimensional infinite summation

â
k1=0

¥ â
k2=0

¥ â
k3=0

¥ â
k4=0

¥

ak1 ,k2 ,k3 ,k4
� â

k4=0

¥ â
k1=0

k4 â
k2=0

k4-k1 â
k3=0

k4-k1-k2

ak1 ,k2 ,k3 ,k4-k1-k2-k3
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This formula shows how to change the order of summation in multiple sums.

â
k1=0

¥ â
k2=0

¥

¼ â
kn=0

¥

ak1 ,k2 ,¼,kn
� â

kn=0

¥ â
k1=0

kn â
k2=0

kn-k1

¼ â
kn-1=0

kn-Úk j=1
n-2 k j

a
k1 ,k2 ,¼,kn-1 ,kn-Úk j=1

n-1 k j

This formula shows how to change the order of summation in multiple sums.

Products

Finite products

ä
k=0

n

ak � exp â
k=0

n

logHakL
This formula reflects the property that the product is equal to the exponent from the sum of the logarithms.

ä
k=0

n

ãak � ãÚk=0
n ak

This formula reflects the property that the product is equal to the exponent from the sum of the logarithms.

Infinite products

ä
k=0

¥

ak � exp â
k=0

¥

logHakL
This formula reflects the property that the product is equal to the exponent from the sum of the logarithms.

ä
k=0

¥

ãak � ãÚk=0
¥ ak

This formula reflects the property that the product is equal to the exponent from the sum of the logarithms.

Operations

Limit operation

Klim
z®a

f HzL � FO � H"Ε,Ε>0 H$∆,∆>0 H"z,0< z-a¤<∆   f HzL - F¤ < ΕLLL
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This formula reflects the definition of a limiting value F for a function f  HzL at the point z = a, when z approaches a

in any direction (the so-called epsilon-delta definition): the formula F � lim
z®a

f HzL means that the function f  HzL has a

limit value F if and only if for all Ε > 0, there exists ∆ > 0 such that   f  HzL - F¤ < Ε  whenever 0 <  z - a¤ < ∆.

A limiting value F does not always exist, and (if it exists) it does not always coincide with the value of the function

at the point z = a  (the last value also may not exist). But in the "best situation", when all the values exist and

coincide: F � f  HzL, and the function f HzL is called continuous at the point z = a. 

Klim
z®¥

f HzL � FO � H"Ε,Ε>0 H$∆,∆>0 H"z,z>∆   f HzL - F¤ < ΕLLL
This formula reflects the definition of a limiting value F for a function f  HzL at the infinite point z = ¥: the formula

F � lim
z®¥

f HzL means that the function f  HzL has a limit value F if and only if for all Ε > 0, there exists ∆ > 0 such

that   f  HzL - F¤ < Ε  whenever z > ∆. A limiting value F  may not always exist, and (if it exists) may not always

coincide with the value of the function at the point z = ¥  (the last value also may not exist). But in the "best

situation", when all the values exist and coincide: F � f  HzL, and the function f HzL is called continuous at the point

z = ¥. 

lim
Ε®0

f Hz + ΕL � f HzL �; f HzL Î CHCL
This limit shows that analytic functions are continuous functions. 

lim
Ε®0

f Hz + ΕL - f HzL
Ε

� f ¢HzL �; f HzL Î C1HCL
This limit defines the derivative of function f  at the point z, if it exists. For analytic functions this limit exists. 

lim
Ε®0

1

Εn
 â
k=0

n H-1Ln-k n

k
f Hz + k ΕL � f HnLHzL �; f  HzL Î CnHCL ì n Î N+

This limit defines the nth derivative of a function f  with an argument z.

lim
z®a

f HzL
gHzL � lim

z®a

f ¢HzL
g¢HzL �; lim

z®a
f HzL � lim

z®a
gHzL � 0 ë lim

z®a
f HzL � lim

z®a
gHzL � ¥ ë lim

z®a
f HzL � lim

z®a
gHzL � -¥

L’Hospital’s rule appeared in the first textbook on differential calculus, Treatise of L’Hospital, in 1696. It allows

you to evaluate the limit of the ratio of two functions limz®a
f HzL
gHzL  through the limit of the ratio of their derivatives

limz®a
f ¢HzL
g¢HzL  in the cases when limz®a f HzL and limz®a gHzL are equal to zero or ± ¥. 

lim
b®¥

à
a

b

f Ht, zL â t � à
a

¥

f Ht, zL â t � "ΕHzL,ΕHzL>0 $∆,∆>0 "b,b>∆ à
a

¥

f Ht, zL â t - à
a

b

f Ht, zL â t < ΕHzL
This formula reflects the definition of the convergent integral Ùa

¥
f Ht, zL â t at the argument z. 

lim
z®z0

à
a

b

f Ht, zL â t � à
a

b

lim
z®z0

f Ht, zL â t
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This formula reflects the commutativity of the two operations definite integration and limit.

lim
z®z0

â
k=0

¥

akHzL � â
k=0

¥

lim
z®z0

akHzL
This formula reflects the reordering of the two operations infinite summation and limit.

lim
z®z0

ä
k=0

¥

akHzL � ä
k=0

¥

lim
z®z0

akHzL
This formula reflects the reordering of the two operations infinite product and limit.

lim
k®¥

à
-Π

Π

f HtL sinHk tL â t � 0

The Riemann–Lebesgue lemma shows that sine coefficients of the trigonometric Fourier series tend to zero as

k ® ¥.

lim
k®¥

à
-Π

Π

f HtL cosHk tL â t � 0

The Riemann–Lebesgue lemma shows that cosine coefficients of the trigonometric Fourier series tend to zero as

k ® ¥.

Relations with other functions

With inverse function

f I f H-1LHzLM � z

This property is the definition of the inverse function f H-1LHzL and can hold without additional restrictions on z (like

z Î D, where D is not C) for many named functions. In these situations, f HzL is in most cases free of branch cuts.

For example, sinIsin-1HzLM � z; here sin-1means f H-1L with f = sin, that is, the inverse sine function (do not confuse

this with the reciprocal function 1 � sin). 

Some of the functions f are invertible: their inversions f H-1L can coincide with the original f , but for other values of

the parameters. For example, the inverse function for the power function za is also the power function z1�a, and the

relation Iz1�aMa
� z takes place only under the restriction -Π < ImJ logHzL

a
N £ Π. In general cases the following relation

takes place: Iz1�aMa � expJ2 ä a Π f 1
2 Π

 JΠ - ImJ logHzL
a

NNvN z.

f H-1LH f HzLL � z �; z Î D

The last property for the inverse function of the direct function can be valid under special restrictions for z (where

typically  D  is  not  C).  For  example,
cos-1HcosHzLL � z �; 0 < ReHzL < Π ê ReHzL � 0 ì ImHzL ³ 0 ê ReHzL � Π ì ImHzL £ 0.
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Inequalities

Algebraic inequalities

â
k=1

n

ak bk

2

£ â
k=1

n

ak
2 â

k=1

n

bk
2 �; ak Î R ì b j Î R

This inequality is called the Cauchy–Schwarz–Buniakowsky inequality.

â
k=1

n

ak bk

2

£ â
k=1

n  ak¤2  â
k=1

n  bk¤2

This inequality is called the Cauchy–Schwarz–Buniakowsky inequality.

â
k=1

n Hak + bkLp

1�p

£ â
k=1

n

ak
p

1�p

+ â
k=1

n

bk
p

1�p �; ak Î R ì b j Î R ì ak ³ 0 ì b j ³ 0 ì p > 1

This inequality is called Minkowski's inequality.

â
k=1

n  ak + bk¤p

1�p

£ â
k=1

n  ak¤p

1�p

+ â
k=1

n  bk¤p

1�p �; p > 1

This inequality is called Minkowski's inequality.

â
k=1

n

ak
p

1�p

â
k=1

n

bk
q

1�q
³ â

k=1

n

ak bk �; ak Î R í b j Î R í ak ³ 0 í b j ³ 0 í 1

q
+

1

p
� 1 í p > 1

This inequality is called Hölder's inequality.

â
k=1

n  ak¤p

1�p

â
k=1

n  bk¤q 1�q
³ â

k=1

n

ak bk �; 1

q
+

1

p
� 1 í p > 1

This inequality is called Hölder's inequality.

1

n
 â
k=1

n

ak

1

n
 â
k=1

n

bk £
1

n
 â
k=1

n

ak bk �; ak Î R ì b j Î R ì ak £ ak+1 ì bk £ bk+1 ì 1 £ k £ n - 1

This inequality is called Chebyshev's inequality.

a + b

2
³ a b �; a > 0 ì b > 0

This inequality is called the arithmetic-geometric inequality.

1

n
 â
k=1

n

ak ³ ä
k=1

n

ak

1�n �; ak Î R ì ak > 0
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This inequality is called the arithmetic-geometric inequality.

â
k=1

n â
j=1

n I¡ak - b j¥p
+ ¡a j - bk¥p

- ¡a j - ak¥p
- ¡b j - bk¥pM ³ 0 �; 0 < p £ 2 ì ak Î R ì b j Î R

 a + b¤ £  a¤ +  b¤
This inequality is called the triangle inequality.

 a - b¤ ³   a¤ -  b¤¤
This inequality is called the triangle inequality.

Integral inequalities

à
a

b

f HtL gHtL â t
2

£ à
a

b

f HtL2 â t  à
a

b

gHtL2 â t

This inequality is called the Cauchy–Schwarz–Buniakowsky inequality.

à
a

b  f HtL gHtL¤ â t £ à
a

b  f HtL¤p â t
1�p à

a

b gHtL¤q â t
1�q �; 1

q
+

1

p
� 1 í p > 1

This inequality is called Hölder's inequality.

à
a

b  f HtL + gHtL¤p â t
1�p

£ à
a

b  f HtL¤p â t
1�p

+ à
a

b gHtL¤p â t
1�p �; p > 1

This inequality is called Minkowski's inequality.

ä
k=1

n à
a

b

fkHtL â t £ Hb - aLn-1 à
a

bä
k=1

n

fkHtL â t �; fkHtL ³ 0 ì fk
¢HtL > 0 ì 1 £ k £ n

This inequality is called Chebyshev's inequality.

a b £ à
0

a

f HtL â t + à
0

b

f H-1L@tD â t �; f ¢HtL > 0 ì f H0L � 0 ì b £ f HaL
This inequality is called Young's inequality.

à
b-k

b

f HtL â t £ à
a

b

f HtL gHtL â t £ à
a

a+k

f HtL â t �; k � à
a

b

gHtL â t í f ¢HtL < 0 í f HtL ³ 0 í 0 £ gHtL £ 1

This inequality is called Steffensen's inequality.

Ùa

b
f1HtL2 â t Ùa

b
f1HtL f2HtL â t ¼ Ùa

b
f1HtL fnHtL â t

Ùa

b
f2HtL f1HtL â t Ùa

b
f2HtL2 â t ¼ Ùa

b
f2HtL fnHtL â t

¼ ¼ ¼ ¼

Ùa

b
fnHtL f1HtL â t Ùa

b
fnHtL f2HtL â t ¼ Ùa

b
fnHtL2 â t

³ 0
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This inequality is called Gram's inequality.

à
a

b

f HtL gHtL â t £   f HaL¤ max à
a

Α

gHtL â t , 8a £ Α £ b< �; f ¢HtL > 0 ì f HaL f HbL ³ 0 ì   f HaL¤ ³   f HbL¤
This inequality is called Ostrowski's inequality.
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