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Notations

Traditional name

Abstract sufficiently smooth (analytic or piecewise differentiable) function

Traditional notation

f(2

Mathematica StandardForm notation

flz]

Primary definition

f(2

The arbitrary function f(2) in this document is defined for al complex z or for some region of ¢ (if it is described
explicitly). In the majority of cases, it is assumed to be an analytical function of the variable z (and sufficiently fast
decaying if needed for the convergence of integrals and sums).

General characteristics

Domain and analyticity
In the majority of cases, f(2) isan anaytical function of z, which is defined in the whole complex z plane (if special

restrictions are not shown).
z—f(@.:C—C

Symmetries and periodicities

f(@+f(-2 f@-1(-2
H-2=1@/ @ =0/\ 1@ = fe@ + f6@ /\ fe2 = — Nfo@=——

Thisformulais the condition for a function to be even. For example, the function f(z) = cos(2) is an even function.

f@+ (-2 f(2-f(-2
f(2=-t@/ @ =0\ t@ =@+ 1@ /\ fe@ = — /\ fol —

Thisformulais the condition for a function to be odd. For example, the function f(z) = sin(2) is an odd function.
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fz+mp)= f(@®/,mez

This formula reflects periodicity of function f(2) (if f is periodic with period p). The analytic function f(2) is
called periodic if there exists a complex constant p + 0 , such
that f(z+ p) == f(2) /; ze C. The number p (with minimal
value |p]) is called the period of the function f(z). For example, the functions f(z) = sin(z) and f(2) = tan(2) have
periods p = 2 and p = & accordingly.

p=2n

Series representations

General remarks

There are three main possibilities to represent an arbitrary function f(z) as an infinite sum of simple functions. The
first isthe power series expansion and its two important generalizations, the Laurent series and the Puiseux series.
The second is the g-series and Dirichlet series (general and periodic), and the third is the Fourier series

(exponential, trigonometric, and generalized Fourier series by the orthogonal systems). These representations
provide very general convenient methods for studying a wide range of functions.

The terms of a power series expansion or its generalizations include power functions in the form (z— zp)* or
(z— 20)Y™ the terms in the g-series include expressions like g¥ /; == ¢(2); the terms in a Dirichlet series include
exponential functions in the form exp(—Ax s). The Fourier trigonometric series usually provide expansions in terms
of cos(k x) and sin(k x) (for trigonometric series) and in terms of ¢’** (for exponential series). Generalized Fourier
series provide expansions in terms of other orthogonal systems of functions, such as the classical orthogonal
polynomials. With each of these methods, you can express in closed form an enormous number of non-elementary
functionsin terms of only simple elementary functions.

Generalized power series

Expansionsat z== z
For the function itself

= 1920
f@o )] - (z-2)"/; 12—~ 2| <R=< oo
k=0 :

The Taylor series, first investigated by B. Taylor in 1715, gives the above Taylor expansion for an arbitrary
function f(2) at afinite point z== z,.
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The sign <> means that the Taylor series should not be taken as purely equal to f(z), since it may not converge

everywhere on the complex plane. The series converges absolutely in some disk of radius R centered on z,, where

Ris called the radius of convergence. On the disk |z— 7| < R, you can exchange the sign « for ==. You can state

M
k!

for most functions that R = limy_., |cd ™ /; ¢ = . The Taylor series coefficients ¢, can also be evaluated by

the Cauchy integral formulack = mec 10 _ -dt/;C,=t-z|=p<R

k+

There are then three cases for R: either Risinfinite, Ris zero, or R is some finite positive number greater than O.

If R= 0, this series converges only at the point z, and the Taylor series offerslittle analytical benefit. For example,
the series 32 o k! (z— z)¥ has no disk of convergence around z, since the coefficient k! makes the terms grow
infinitely large no matter how small |z — zy| becomes.

If R= o0, the series converges in the entire plane. In such cases it either represents an entire transcendental func-
tion—as, for example, the series Y2 (z— 20« / k! does for the exponential function exp(z — zg)—or it contains only
afinite number of terms and therefore represents a polynomial.

If 0 < R< o0, the sum of the series defines a regular analytic function having at least one singular point on the
circle |z— zp| == R. There may be finitely or infinitely many singular points on the circle, but there must be at least
one. The power series Y2, (z— zo)k/k = —log(zg + 1 - 2), for example, has only one singular point, at z= 7y + 1.
Other power series have dense sets of singular points on the circle, such as the series Y2, 2, which has many

singular points on the unit circle, the edge of its natural region of analyticity. The same holds true, with the same
region of analyticity, for the series representation of the logarithm of | nver seEl |i pti cNoneQ

log (L2 2) = ZkNO«fﬁﬁ))

Inside the region of convergence of the series, you can exchange the sign « for == in the preceding Taylor expan-
sion for an arbitrary function f(2) at afinite point z;:

& 19@)

f(z ==Z

k=0

(z-2)%/;1z- 2| <R= o0

Infinite Taylor series expansion can be approximated by the truncated version, the finite Taylor polynomial expan-
sions. But in these cases, instead of the equality sign ==, you will use the sign o« and an dllipsis ... or an explicit
Landau O term, for example:

f(2) o« f(20) + f'(20) (z— )+ f"(ZO)(z 20)° + f<3)(20)(2—20)3+.../:(2—>20)

f0(z,
a—a%+aa—aw

f(Z)ocZ

The Landau O term O((z- z)") in the preceding relation means that the next expression is bounded near point
Z==7
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f®(z) (2 z9)
k!

(z-2)"|f(@ - < const

n
k=0
For compositions with elementary functions
Including power functions

7 —arg(c) — Im(mlog(z - z))
2n

+

@f@H’ = exp[27r i b[r {

+

n—arg@ac’) — Im(mr log(z - 7)) 7 —arg(c) — Im(mlog(z - z))
{ 2n —r{ 2n

2n

=)

k

o (~D* (b, f@ f(2
@c)® (z-z)™P [C‘r[ ] —1) /i (z-29) /\ lim =c/\c+0
kzzc; k! (z—-2z)" /\ 2% (2-zp)" /\

Including logarithmic and power functions

7 —arg(c) — Im(mlog(z - z))
2n

+

log(a f(2)") == Zin[r{

n—arg@ac) - arg(i)

n—arg@ach — Immrlog(z - z)) n—arg(c) — Im(mlog(z - z5))
-r
{ 2n { 2r JJ+

]+

7 —Im(log(q) f(ZO))J lﬂ —arg(a) — Im(r log(q) f(z)) r —Im(log(9) f(z)) JJ]
+ —-Re(n)| ———8M8 |||+

2

k

@ (-1t f@ Y f(2
log(ac) +mrlog(z—zy) + [c’[ ) —1} /i (Z—Z) /\ lim =c/\c+0
; k (Z_ Zo)m /\ 77y (Z_ ZO)m /\

2n 2n 2n

log(a(q"®)) = zm[r {

= 10(z9) (2— 70)
log(a) +rlog(@) ) — e
k=0 :

StringTake[" |||", {6, 4}] Expansionsat z==0
For the function itself

1 1
f(2) o« f(0)+ f/(0) z+ 3 f70) 2 + " fO0) 2 +.../: 2> z)

1 1
f(2 « f(0)+ f'(0) z+ 5 f7(0) 2 + . @02 +0(Z)
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X/ 1d<R<o

()
k!

f(2) & i
k=0

f(2) « £(0) (1 +O(2)

Laurent series

o 1 f(t)
f@ o > az-2)"/a=—

dt [\keZ
2mi Je, (t — z5)<*t /\

k=—c0

The Laurent series, first studied by P. Laurent in 1843, gives the Laurent expansion for the function f(2) around a
finite point zy, where C,, isthe circle |t — 7| = p with radius p, r < p < R. Here Risthe radius of convergence of
its regular part Y ock(z— )¢ and 1/r is the radius of convergence of its principal part

St oz 20)¢ = 324 c_(z— 20) K. The coefficient c_; of the power (z— z)~! in the Laurent expansion of
function f(2) iscalled the residue of f(2) at the point z:

1
res,(f(2) (z) = P f(t) dt

niJc,

If r < R, then the Laurent series converges absolutely inthering r < |z— 7| < R, where its sum defines an analytic
function. If r = 0 and the principal part includes only afinite number of terms (that is, if cc =0for k< -n<0for
some n € N*), then f(2) hasapole of order n at the point z = z,.

For example, the function cot(z) has a pole of order 1 (also called asimple pole) at the point z= 0, since it has only
oneterm in the principal part of its Laurent series expansion:
1 (-1)k22kB2k22 1z 2

cot(z)==—+27 k=l 4.

z I 2k)! z 3 45
If r = 0 and the principal part includes an infinite number of terms, this analytic function has an essential singular-
ity at the point z= z,. For example, the sum Zgz
z=0.

zk/(—k)! = exp(1/2) has an essential singularity at the point

—00

Puiseux series

@ o ) cz-z)H"

k=—c0
The Puiseux series, first studied by V.-A. Puiseux in 1850, expand f(z) around a finite point z as
f(2 & Y Cek(Z— ), with g(w) usually chosen as g(w) = W™, (Other choices for ¢k(w) are possible
through the use of iterated logarithms of the form ¢ (W) = WF™log'(w), @r(w) == W™ log"(w) logXlog(w)), and so
on.) Choosing ¢(w) = W™ gives the Puiseux series for algebraic bivariate functions (because such functions
should not include logarithms like log"(w)).
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If this series contains only a finite number of nonzero coefficients ¢, with negative indices k, the point z is an
algebraic branch point of order m— 1; otherwise it is a transcendental branch point, such as the point z= 0 for the

function 1/ exp(1/2) .

Puiseux series are widely used for describing solutions of differential equations near singular points and, in particu-
lar, for representations of elementary and special functions near their singular points. The named elementary
functions can have rather complicated behaviors near their singular points.

o (-1(3), @- D"
costz=+vV2V1i-z Z—/; z-1 <1
k=0 2k(2k+ 1)k'

The point z=1 is an agebraic branch point of order 1 for the function
cos 1(z) = (\/ 1-z /\/ z-1 ) Iog(z+ vz-1+vz+1 ) This function has the Puiseux representation for its

fundamental branch near point z= 1.

A similar representation occurs near the branch point z= -1.

1 (%) 72k
log(~47) - -
2y -2 i 22

Ve
cosi(z) == — - ild>1

k
kk!

This expansion near the branch point z = co shows that cos™1(2) has a logarithmic-type singularity that can provide
infinitely many values depending on the direction of approach of the variable zto .

© Zlog“(2)
Z == Z -
k=0

This Puiseux series for Z* near the point z = 0 includes powers of logarithmic functions.
The Puiseux series for Iogz(log(z)) near the point z = 0 coincides with itself.

D¢ & S 1oglog2)

W(2) == log(2) - log(log(2)) — Z

K
- oC
k=0 |ng(z) =1 J!

logllog@) log’(log(2)) - log(log(2))
log(2) 2log?(2)

+ /(14 > o)

log(2) - log(log(2) +

This Puiseux series for the Pr oduct Log function W(1/2) near the point z= co has a more complicated structure
involving iterated logarithms. The complicated structure is to be expected from inverse functions like
Pr oduct Log.

g-series

f@e ) ad/ia=9¢

k=—00
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This g-seriesis widely used in applications. In the case q == ¢(2) = ¢'%, ¢ = %f_’;f(t) e~ Kt qt, it coincides with

exponential Fourier series.

In very particular cases, g-series can coincide with some trigonometric functions. For example, if

g=¢(2) ==¢€'% Cc_1==C1 = % and all other ¢ are zero, then f(2) == cos(2).

In more complicated cases, g-series can define different specia functions, for example elliptic theta functions:

o0 {Zcos(ZWW) \/?ez/\k>0qk.

0 True

03(W1 CI) =1+

K=—c0

Dirichlet series

General Dirichlet series

= log(lay))
f(2) & Zak exp(-A¢2) /; R&(z) >cAc=lim
i Kk—oco Ak
If al coefficients Ax > O, this Dirichlet series for the function f(2) converges in some open haf-plane Re(z) > c. In

this case, for many Dirichlet series the abscissa of absolute convergence can be found by the formula

Iog a
C=lIMseo gk |).

In the more general case 0 < |Ag| < |A1] < ..., the Dirichlet series absolutely converges in some open convex
domain. In both cases, the sum of the Dirichlet seriesis an analytic function in the domain of convergence.

For example, if Ay =2kandax =1 or ax = (— 1)", you have, respectively, the Dirichlet series:

S —-2kz z C&:h(Z)

Zf =e¢ /iRe( >0

k=0

o Zsech(z
Z(—l)ke-m L o= /;Re(2) >0
k=0 2

In the case Ax = log(k), you have the ordinary Dirichlet series f(2) & Y, (a/k?, which in its simplest case
(a =1, Re(2) > 1) is the Riemann zeta function {(2) = >, (1/k?. Other interesting examples of the Dirichlet
series include the series for dliptic theta functions. For instance, if ay = %qkz and A = ¥ 2ki, you have the represen-

tations:

© 1> R .
quz cos(2kz) == _quz e2kiz g _qu@ @—Zkzz/; g <1
k=1 2 k=1 2 k=1

(o) 5 1
D€ cos2kn = ~ (35 ) - D /; ldl < 1
k=1 2

Generalized Fourier series
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s b b
f09 & > detheX) /; o == f u® fdt [\ ken /\ f Yl Yn(®) dt = G
k=0 a a

Under some additional conditions (such as piecewise differentiability), this Fourier series of an arbitrary function
f(x) by the orthogonal system {(x)} with Fourier coefficients d¢ convergesto f(x) on an interva (a, b) at the

points of continuity of f, and to %(f(x+ 0)+ f(x—0)) a the points of discontinuity of f, where

f(xz0) = |im0f(Xi€)).

) b b b
< f f®2dt /; dy = f u® todt \ken /\ f Um(®) Yn(®) dt = Gy
k=0 a a a

Theinequality takes place for al orthogonal systems {¥(X)}; it is called Bessel's inequality. If it can be transformed
into Parseval's equality:

) b b b
Y= [t0fatid= [ wwtoa\ken \ [ un0unwdt=im,
k:O a a a

The corresponding system {y«(X)} is called the compl ete system.

The best-known examples of orthogonal systems are the classical orthogonal polynomials and the trigonometric
system including cos(k x) and sin(k x).

Generalized Fourier series through classical orthogonal polynomials
0 b b
F00 & D ki) /s ch = f e fodt [\ ken /\ f Ym(®) Yn(®) At = G
k=0 a a

For example, any sufficiently smooth function f(x) can be expanded in the Hermite orthogonal system
{Hn(X)}p_q4,... OF in other orthogonal systems with corresponding weight factors as a generalized Fourier series,
with its sum converging to f(x) amost everywhere in corresponding intervals of variable x. The following repre-
sents this type of Fourier expansion through all classical orthogonal systems of polynomials.

2

F00 == )" ch () /5 cy == f Un(® FO dt /\ 00 = 7 Hi [\ xeR
n=0 -

VVr 2'n!

f00 =D dhhn(®) /; th = f Un® T dt \ ¥n(0 = ¢ 2 Ln(x) /\ x>0
n=0 0

> 00 Vnr x
0= dhthn(¥) /; thh = f Un® f dt [\ Yn(0 = ————x"2e72 L3 /\ x>0
pary 0 VI(+1+1)

(0= dathn(¥) /; chy =f1wn<t) fdt [\ vn =,/ S@n+D Pax \ ~1<x<1
n=0 -
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2
[y 1 n 1
f00 = a0 /; chy = f Un® FO dt \ Y0 = —————(1-5) * Ty [\ -1 <x<1
-0 -1 (V2 -1)6n+1

00 1 2
f(x) =Zdn¢/n(X) /3 On =f1wn(t) f(t)aft/\l//n(X)= N Vi-» Un(X)/\—1<X< 1
n=0 - 4

2“3Vl Vnen ) 211
(1-%) + choo \ ~1<x<1
Vi VT(n+22)

0 1
f00 =) dh () /; dh = f Un(®) FO dt [\ gn(x) =
n=0 -1

0 1
f09 = > chhn() /; G = f Un(® fO dt f\
n=0 -1

a+b+1

22 vn! Va+b+2n+1 VvI(@+b+n+1)
Un(X) = (1-0?2 (x+ 2P \ ~1<x<1

VI@+n+1) VvI(b+n+1)

Exponential Fourier series
f(x) o i e /i = if”f(t)e‘““dt
Ke—oo Y 2n J-x
This exponential Fourier series expansion can be transformed into a trigonometric Fourier series by using the Euler
formulae’? == cos(z) + i Sin(2).

Following is an example of the exponential Fourier series for the simple function f(x) == X /; -7 < X< 7.

o _ 0 k=0
X= Z C € i o =1 i kncoskm-sinknm) True /\—JT< X<

k=—co K2

Outside theinterval —n < x < x, the sum forms a periodic function and the following expansion holds for al real

X
xn o 0 k=0
X+ - —€e”Z .
X= Zn{—J 2n Cke‘kx/ Ck =9 i(kxcoskm)-sin(kn)) XxeR
2r { 0 True k;o Y S True /\

Trigonometric Fourier series
d > 1 pn 1
f(x) < > +Z(akcos(kx)+bksin(kx)) /s &y == —f f() cos(kt)dt/\bk =— | f)ysinkt)dt
k=1 nTJ-n nTJ-n
This series expansion into a trigonometric system first appeared in an 1807 paper of J. Fourier, who used asimilar

expansion on the interval (0, 2). However, L. Euler had discovered similar formulas for Fourier coefficientsin
1777.
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An arbitrary interval (a, b) can be transformed into the interval (-x, 7) by changing the variable
Xx- X(b-a)/(2n) + (a+b)/2. This alows you to write the following Fourier series expansion of the arbitrary
function f(x) on an arbitrary interval (a, b):

8 X a+b) 2n a+b) 2n
f(x) & — cosk|x— — | — |+ b, sinlk[x— — | —||/:
% 2+;[ak {(X 2 ]b—a)+ ‘ ((X 2 ]b—a))/
fft t arb 2 " at /\b 2 bf(t '[k[t arb 2" \at
=— cogk|t—- — |2 — = sn[k|[t- — 2 — |at.
e e AT R K e e

In the preceding formulas the coefficients should vanish at infinity ax — 0, by » 0 ask - .

In the internal points X, a < X < b, where the piecewise differentiable function f(x) is continuous, the preceding
sum of the Fourier seriesis equal to f(x) and you can change the symbol « to ==.

At the points of discontinuity, this Fourier sum is equal to % (f(x+0)+ f(x=0)).

Outside the interval (a, b), the Fourier sum is a periodic function with period b — a, but the behavior of thissumis
not necessarily related to the actual behavior of the function f(X) outside theinterval of expansion (a, b).

For example, let f(x) = xand (a, b) = (=1, 1). Thena, = 0, by _25':2("2’ - Zcisfrk”), ke N, and:

f(x) & Z

2sin(k ) Zcos(kn) i )
[ )sin(knx) = —log(e™™ ")
T

I nspection shows that the Fourier sum ’; Iog(e‘”x) has period 2 and coincides with x on theinterval (-1, 1). But at

sin(k ) with

the endpoint x = 1 the Fourier sum is equal to O, since you are evaluating >} ; (zsm(k”) M’;’(k”’)

a2

sin(k ) = 0. Thisresult coincides with = (I|m —Iog( EX) 4 I|rln0 Iog( "”x)) 5(1-1).
+ Vs

Asymptotic series expansions
Expansionsat z ==

f(2-9@ Teeox 7

g2zt

k=0

<|Cnhs1l /i 12 > R]

This asymptotic series expansion of the function f(2) at s includes the main term ¢ g(2) /; co # 0 and other terms
of the form g(2) ¢k z¥. The corresponding formal asymptotic series Y, ¢k Z ¥ is, by definition, formed in such a

f(2-9@ T_oe 7%
g2zt

way that the following inequality holds for al neN and sufficiently large |2: ‘

< |Cns1l. This

asymptotic series can be a divergent or convergent series. If this series converges, it coincides with the Taylor
power series expansion at infinity.

For example, the confluent hypergeometric function U(a, b, 2) has the following asymptotic series expansion
through the divergent series ,Fg:
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1
U@ b, 2 « Z’azFo(a, a-b+1;; ——) /3 (12 = o)
z

The relation takes place because the following inequality holds for each n € N and sufficiently large |2

(-1 (@) (a-b+1) K

U, b,2-z23%, o

<const/; |7 >R
Z—a—n—l

The function Ei(2) has arather interesting asymptotic expansion at o through the following divergent series:
e? & k!
Ei@@ o — > — +misgn(im() /; (12 - o)
Zin
The next example includes a convergent series in an asymptotic expansion. So, you can use the sign == instead of o:
% )k 72k

snt2=

ol 2 & kk!

In the particular case n==0, the first generic formula for asymptotic expansion can be rewritten in the following
form:

1
[f(Z) o« g(2) [CO + O[;)) /ico#=0A(Z - oo)) =(z(f@-cg@)<c. /i 14d>R

Expansionsat z== 7

(2 - 92 Yo & (- 20)

<|chal /i 1z=zl <€

[f(Z) <92 ) c(z-2) /; o 0N (2 7)

k=0

92 (z-70)™*

This asymptotic series expansion of the function f(2) at z== z; includes the main term ¢y g(2) /; ¢o # 0 and other
terms g(2) ck (z— 2)%. The corresponding formal asymptotic series Y2 Ck (z— 20 by definition isformed in such a
(-9 Xp_o% (2-20)

9@ (z-2)"*
This asymptotic series can be a divergent or convergent series. If this series converges, it coincides with the Taylor
power series expansion at the point z == z.

way that the following inequality holds for all n e N and sufficiently small |z— z: < |Cnsl-

For example, the functions sec™%(z) and sin"*(z) have the following asymptotic expansions near the points z== 0
and z == 1 through convergent series. So, you can use the sign == instead of « here:

1
1 o 1 1 4 > (E)kZZk
SCT(D)==-+—-2 | —— Iog(——)— i1d<1
2 2 2 2) & kkt!

- (3),@-2"
dnt@=--v2+V1i-z Z—/;|z—1|<2
2 ok 2k+ k!
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In the particular case n == 0, the first generic formula for asymptotic expansion can be rewritten in the following
form:

f(2-c092 )
—|<a/ilz-%|<e

(f(@ x 9@ (Co+0(zZ-2)) /i co#0A(Z~ ) = [‘

Residue representations

f@= ) res(g(s) (ak+b)
k=0
For many analytic functions f(z), you can establish so-called residue representations through infinite
sums of residues of another analytic function g(z) in the points s== ak + b. The residue of the analytic
function g(2) in the pole of order m can be calculated by the formula:

1 M@ z-z0M
res,(9(2) (zp) = lim /imeNT*
(m-1)! % 9zt
If the function g(z) can be represented as a quotient g(z) == %, where the functions ¢(z) and n(z) are

analytic at the point z== z; and z; is the simple root of the equation 7(2) == 0, then the following
formula holds:

$(2) #(2)
re —, 220}]= /s #(Zo) #0An(z0) =0A 17 (Z) #0
n(2 7' ()

Very often, residue representations appear from the theory of the Meijer G function. The mgjority of
functions of the hypergeometric type can be equivalently defined as corresponding to infinite sums of
residues from products of ratios of gamma functions I'(ak S+ Bk) on power function z°.

For example, the following residue representation formulafor alogarithm function takes place:

0 F(—S)2 Z—S ]
log(z+ 1) = E resf ———TI(s+)|(-))/;l1d<1
= rl-9)

Integral representations
Fourier integral representations
00 1 00 1 0
f(x)ef (a(t) cos(t X) + b(t) sin(t X)) d't /; a(t) ==—f f(r)cos(tr)dr/\b(t) = —f f(r)sintt)dr
0 T J-c0 T J-0

The Fourier integral is the continuous analogue of a Fourier series. This formulas can be derived from the Fourier
series expansion of the function f(x) oninterval (I, |) asl - .

The substitution of a(t) and b(t) into the integral gives the following Fourier integral formulas:

1 00 00
f(xX) & —f f f(r)ycos(t (x—71))drdt
T Jo —00
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1 o f(T)SIN(R(X— 1))
f(x) & — lim —dr.
7T Roeo Jooo X—T

The first definition can be rewritten in exponential form, leading to exponential direct and inverse Fourier

transforms:
1 r , 1 r ,
f(x e fﬁ[f(r)] M edt/; Flf@]1) = ff(r) e'trdr.
V2r Y Von e

If the function f(x) is absolutely integrable on the real axis, you have the following equality:

1

R
1 .
—(fX+0) + f(x=0)) == lim fﬁ[f(r)] ) e % dt.
2 e o

Product representations

z
log| —

f@=][Pt@ ¥ /i Pof@ =@ [\ Puf(2)=exp

k=0

[z a|09(Pk_1(f(2))))
0z

Transformations

Transformations and argument simplifications

Argument involving related functions (compositions)

=S}

f@) =) a?/;

k=0

[f@ = a1 < rl]/\[g(z) =3/ 1d<ra Abp# 0| A\ lg@l <rs
k=0 k=0

i ) 1 kK
6= 2P [\ Pro=1/\ pic=— > (i m+m=K b pym [\ keN| /\
j=0 b0km:1

This formula shows how to generate the series expansion of a general composition f(g(2)) at the point z== 0, using

the known series expansions for each of the functions f(z) and g(2) at z==0.
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@) =) a2/,

= D) (g i iz e 0By DS B N\ =20 [\ cr=aib N\ =arb, + a2 /\

i1+2iy+--+ki=k

Cy==ay by +2 azblb2+asbi/\c4==alb4+2a2b1b3+a2b§+3a3b§b2+a4b‘l‘/\...]/\

[f@) =) a1 < n]/\[g(z) = > b2/l <r Aby==0| /\ lo@I <1y
k=0 k=0

This formula shows how to generate series expansion of the general composition f(g(2)) at the point z== 0, using
known series expansions for each function f(z) and g(2) at zero.
Products, sums, and powers of the direct function

Products of the direct function

oo k [ (S
292 = Z[Zan bk_n] 2/, [f(z) =Y az/ld< rl] A [g(z) = > b2 /12 < "2] N1d <r=min(ry, ry)
k=0 k=0

k=0 \n=0

This formula shows how to multiply power series of two functions f(z) and g(z) at the point z== 0.

zk+z“+12

k=0

9 =) b2/ 14 < rJ
k=0

Zaj+k+1bn ]]Zk/ [f(Z) Zakzk/ |Z|<I’]/\

j=0

f(2 92 = Z(Z aj b

k=01{j=0

This formula shows how to multiply power series of two functions f(z) and g(2) at the point z== 0.

o (k n
@92 h@ = Z[ZZak_n < bn_i] ),

k=0\n=0 i=0
[f(Z) =)< r1] A [9(2) =Y b2/l < "2) A [h(Z) =Y /)id< ra) N1d <r=min(ry, rz, r3)
k=0 k=0 k=0

This formula shows how to multiply power series of three functions f(2), g(2) and h(2) at the point z== 0.

Ratios of the direct function

———Z(k+1>z ~ )r( P2

92 boim

(o] k
g(Z)=Zkak/\bo¢0/\ pj,o=1/\ Pjk == iZ(J' m+m-—K) b pj,k—m/\k€N+
k=0 bok i

This formularepresents the reciprocal of a power series for function g(2) at the point z== 0.
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f(z)

iqkzk/ak--Zb,qk_J/\f(z)--Zakzk/\g(z) b2
k=0

) pay

This formula represents the ratio of a power series for functions f(2) and g(2) at the point z== 0.

f(z)

ZZ(J+1)ak]Z

g(z) bo =0 i=0

00 o k
f(Z)::Zaka/\g(Z)::Zbkzk/\bo:/:O/\plyozzl/\ pj'k::ﬁz(jmﬁ-m—k)bmpj'k,m/\kEN-F
k=0 k=0 o K o1

e

This formula represents the ratio of a power series for functions f(2) and g(2) at the point z== 0.

Qg2 1 &K j Y (I]r)
=— (j+Dd Pr
h@) cOkZ;JZO kJZ 1z

f(2)=iak2“/; I2|<r1]A[g(Z)=ibkzk/; IZI<r3]/\[h(Z)=iCkzk/\Co¢0/; 2 <ra |\
k=0 k=0 k=0
12 <t = min(ry, 1y, 13) [\ de = Zanbk— /\pjo—l/\p,k— Z(Jm K+m) cm i /\ ke N*

This formula represents the ratio of a power series for functions f(2), g(z) and h(z), at the point z==0.

Sums of the direct function

f(@+ gz ::Z(akibk)zk/;[f(z => a2 <r1]/\[g(z =021 <ra| [\ Id < =min(ry, 1)
k=0 k=0

k=0

This formula represents the summation property for the power series of the functions f(z) and g(2) at the point

z==0.

Power s of the direct function

f@” = Z[Zanak_]f/[f(a Zakzk/ |2|<r]

k=0 \n=0

This formula represents the series squared property of the functions f(2) at the point z==0.

0 o 1 k
f(z”::Zpkzk/;[uz = az/, |z|<r1]/\po::a8/\ao¢0/\pk::ame—k)aj pi [\ keN" 12 <
k=0 k=0 j=1

Thisformularepresents the n'" integer power of the series for the functions f(2) at the point z== 0.
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2mﬂ[1_@_iarg(@)J

2 2n 2n )

a0 (NS (onr

f)"=e

0o 1 k
f(2 ==Zakf(/\ao * 0/\ Pjo = 1/\ Pjk=— Z(i m+m-K) an pj,k—m/\k€N+
k=0 aok 7
This formularepresents the arbitrary " power of the series for the functions f(2) at the point z== 0.

2ian

3‘930) m(Blog(2) 2)
R 1 ( Im(Blog@) 1 (f()
(Z/E (Z)) =@

P g S K

(e8] k
f(Z)==Zak£(/\ao¢0/\ pj,o=1/\ Pjk == LZ(jm+m_k)arnpj,k—m/\k€N+
k=0 aok o

This formula represents the generic arbitrary power of the series for the functions f(2) at the point z==0.

Related transformations

Inversion

D@ => 6/

1 ki j
Co=0/\C1 /\Ck___zajzoz Z})élzp_lp i (i +ip+... +ixiq, ip ...,|k)1—[cp/\
= i1=0i,=0 iy
2 3 5
sz—% Cszw/\c4:—5a2 53133a2+ala4/\m /\
af af a

[f(z) Za«; Nao= 0/\a1¢0]/\ ()=

This formula represents the series expansion of the inverse function f2(z) through the known power series of the
direct function f(2) at the point z==0.

n! a\"™ ay\&
Vi = Z L(k+nl+n2+-~-+nk—1;k—1,nl,nz,...,nk)[——z) ---(——)

np+2ng+-+(k-1) n=k-1 K&y & &

[f@) Zakg Nao= 0/\a1¢0]/\ (V@)=

0@ =) a2 ;
k=1

A

This formula represents the series expansion of the inverse function f-Y(z) through the known power series of
direct function f(2) at the point z==0.

Re-expansionsin different points
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o0 (<] . k X 00
f( = f(z) +Zzaj+k( : E )zé(z—zo)k @)= ac
k=0

k=1 j=0

This formula shows how to generate the series expansion of the function f(2) at the point z == z,, if this function is
presented through the power series at the point z==0.

f@=Y YL ol 2 t0= ) acz-2)
k=0 j=0 k=0

This formula shows how to generate the series expansion of the function f(z) at the point z==0, if this function is
presented through the power series at the point z == z,.

f@ ==ZZaj+k( : i )(zl ~2)fz-2) /1@ = az-2)
=0 k=0 k=0

This formula shows how to generate the series expansion of the function f(2) at the point z == z,, if thisfunction is
presented through the power series at the point z == z,.

Expansionsthrough classical orthogonal polynomials

o o K o
f(2) = f(ZO)‘l'ZZaijk(JE )Z(J)(Z—Zo)k/; f(Z):=Z:akzk
k=0

k=1 j=0

This formula shows how to generate the series expansion of the function f(2) at the point z == z, if this function is
presented through the power series at the point z==0.

f2 ::ZZaHk(J; ](—ZO)Jzk/; @)= a@z-2)
k=0 j=0 k=0

This formula shows how to generate the series expansion of the function f(z) at the point z==0, if this function is
presented through the power series at the point z == z,.

f(2) = ZZaj+k( ) T ) @ -2 2-2) /; 1) = ) a@-2"
j=0 k=0 k=0
This formula shows how to generate the series expansion of the function f(2) at the point z == z,, if thisfunction is

presented through the power series at the point z == z,.

Determinants

1 & a% . a.;_]_l
n-1 n n
1 a a% cee Gy _nl_[ (ai—aj)
. R i=lizj+1

1 a, a2 ... art

This determinant is called the VVandermonde determinant.
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Complex characteristics

Real part

fx+iy)+ f(x—iy)
2

1
Re(f(x+iy) == —| f|x—X —i + fIx+x —i
2 \J X2 \J X2

Imaginary part

Re(f(x+1iy)) ==

fx+iy)—f(x-iy)

Im(f(x+iy)) == >
I
x|y ¥ ¥
Im(f(x+iy)=— | —-—— [f[x—x | -—— |- f[x+x | -—
2 X2 X2 X2

Absolute value

1fx+ iyl =/ fox+iy) Fx—iy)

Argument

fx+iy)+ fx—iy) f(x+iy)— f(x—iy)]

f V) == tan~! ,
arg(f(x+iy) ==tan [ > Y

1 y2 y2 X
ag(fx+iy)=tanY —[f[x—x | -—= |+ f[x+x | -— || —
2 X2 X || 2y

Conjugate value

f(x+iy)=f(x-1iy)

¥ Vo ix | ¥
fl |-— x+x[+f[x-x [-—||-— .| ——
X2 X2 2y X2

f@=10©

f(X+iy)==

N -
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Differentiation

Low-order differentiation

Derivatives of thefirst order

f(z+e) - f(2
f'@=lm —M
-0 €

Thislimit defines the derivative of afunction f at the point z, if it exists.

d(cf(2) of(2

0z 0z

Thisformulareflects the property that a constant factor can be pulled out of the differentiation.

If@+92) df@@ . 992
0z N 9z 9z

This formula reflects the property that the derivative of a sum (and difference) is equal to the sum (and difference)
of the derivatives.

0(f@92) 0f(2 292
= 92+ f(@ —
0z 0z

The product rule for differentiation shows that the derivative of a product is equal to the derivative of the first
function multiplied by the second function plus the derivative of the second function multiplied by the first function.

a(f292hw@) oh) a2 992
= (292 + h(2 9@ +
9z oz 0z 9z

f(2h(2

The product rule for differentiation shows how to evaluate the derivative of the product of three functions.

M, @) o, 1 ofj@ n
i ]_[fk(z)
0z i fi oz

k=1

The product rule for differentiation shows how to evaluate the derivative of the product of n functions.

0 (2 1
s g,
0292 g2?

of(2 9912
- f(z )
0z 0z

The quotient rule for differentiation shows that the derivative of the ratio is equal to the derivative of the numerator
multiplied by the denominator minus the derivative of the denominator multiplied by the numerator, divided by the
square of the denominator.
f(2h@
T 9@2h@ '@ -f@h@g@+ 292N @
0z 92?
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The quotient rule for differentiation has been generalized to the case when the numerator is the product of two
functions.

f(2
9 w@ha 9@ h@ '@ -f@h@9d@-f@92N©2
0z 92?2 h@*

The quotient rule for differentiation is generalized to the case when the denominator is the product of two functions.

o & © 0a(2)
—Ya@=)
9zi5 o 0z

This formula shows that the derivative of the sum is equal to the sum of the derivatives. For an infinite sum it is
true under some restrictions on ax(2), which ensure the convergence of the series.

::iakkzk’l /12 < r/\ f(z ::iakzk/; 1z < r]
k=0

k=1

This formula shows that the derivative of a power seriesis equal to the corresponding sum of the derivatives. It is
true inside the corresponding circle of convergence with radiusr.

91(9(2)

=1(02)9@

This chain rule for differentiation shows that the derivative of composition f(g(2) is equal to the derivative of the
outer function f in the point g(z), multiplied by the derivative of the inner function g.

9192, h(2)

5 =g f*g@, h@) + (@ Vg2, h2)
zZ

This chain rule for partial differentiation generalizes the previous chain rule for differentiation in the case of a
function with two variables f(u, v) /; u==g(2) A v == h(2).

01012, %2, ... WD)
— = Y@ 109G @, ..., (D, ..., (D)

k=1

This chain rule for partial differentiation generalizes the chain rule for differentiation in the case of afunction with
several variables f(ug, Uy, ..., Up) /; k=@ Al=<k=<n.

Atz 1

9z f(f-Y(2)

This formula shows that the derivative of the inverse function f(2) is equal to the reciprocal of the derivative of
the direct function f in the point f-(2).

af(2
=, #f@

oz 0z
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This formula shows that the composition of the first derivativesis equal to the derivative of the second order.

0
—ff(z)dz:: f(2
0z

This formula shows that the derivative of an indefinite integral produces the original function (the derivativeisthe
inverse operation to the indefinite integration).

0 z
—f fydt=1(2
0z Ja

This formula shows that the derivative of a definite integral with respect to the upper limit produces the original
function.

0 b
—f ft)dt=—-f(2
0zJz

This formula shows that the derivative of a definite integral with respect to the low limit gives the original function
with anegative sign.

o b b
—f f(t, 2 dt ==f OV, 2 dt
0z Ja a

This formula shows that the order of differentiation and definite integration can be changed if the limits of the
integral do not depend on the variable of differentiation.

0 rh@ h@
— f(t, 2 dt= f fODt, 2dt- 02, 29@ + f(h@), 2N (@
0Z Jg2 92
This formula reflects the general rule of differentiating an integral when its limits and its integrand depend on the
variable of differentiation.

Derivatives of the second order

812 y f(2-2f(z+€e) + f(z+2¢)
=1lm
622 -0 €2

Thislimit defines the second derivative of afunction f at the point z, if it exists.

9*1(92)

=1"(92)g@*+ f'(92) 9"
This formula shows how to evaluate the second derivative of ageneral composition f(g(2)).

Symbolic differentiation

Definition

10 n
(n) —lim — _1\n-k
f (Z)“LL”J - éo( 1 (k)f(z+ke)
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This limit defines the n'"-order derivative of afunction f at the point z, if it exists.

Converting to finite differences and back

oNf(2) © -
Z U AN @) /; A% 1@ = A A F@) \ A f@ = fz+ ) - F@
=0 (n + 1 k
) hj+n ak+n f(Z)

INSIGESY Ty S i f; A5 F@ = ASH A @) N\ An f@ = fz+ D - @

Products
n oy & f@ " g
Oy (T(29(2) = Z( k) g ﬁ

k=0

Thisruleiscaled the binomial differentiation rule for the n"-order derivative.

(Hk_ f(2) o s " f(2)
Z Z Z On Ny +Ny+Ng (Ng + Ny + Ng; Ny, Ny, n3)l_[
n;=0n,=0n3=0 k=1 9z

Thisruleis called the multinomial differentiation rule for the n"-order derivative.

n m
;—an_lfk(z) ZZ Z‘Snz , (N1 N2+ Ny Ny, N,y i)
k=1

n=0n,=0  nyu=0 k=1

m 9% fi(2)
07

Thisruleis called the multinomial differentiation rule for the n"-order derivative.

Ratios
nf(z) X . .
@ n ki) K (DI k+Dg@ It &g
oy ()Z( ) (k+1 g2 92 N
oz o 027% D U+DIn-KIk-D! o

This formula shows how to evaluate an n'"-order derivative for the quotient of two functions.

nf@ "t . ;
W o N kf(z) X D' k+1) *g2!
Z

== _j_l
07" Q(Z) o 02 ,Z‘( +DIin-k!k-)!

/ineN

This formula shows how to evaluate an n'"-order derivative for the quotient of two functions.

nf@ (2
e a7 oM () & (=19 (m+1)

= +n! (2791
07" 9@ o= oz qz(q+l)'(n m! (m- q)'g

m  m-k@) m_Z] )

PUPIEEEPY

k(1)=0 k(2)=0 k(g-1)=0

a1 ki) g () HM k) 92
/ineN

ﬁ[ m—z‘j_llku)] i
azm—ZJ 1k(J)

i=1 k(p) io1 020

This formula shows how to evaluate an n'"-order derivative for the quotient of two functions.
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nf@ M"f(2)
ﬁ 02 n an_kf(z)
== +n!

oz 92 o 07K

k m k m AN

=DMk+1) %92
g™ Soom (Mg +Ny+ ...+ Ny Ny, Ny, .y N ineN
n;(m+l)!(n—k)!(k—m)v an:Or; mZ:JO LoV m m g

This formula shows how to evaluate an n'"-order derivative for the quotient of two functions.

Power
"M@ n-ay (D€ /n L@

=a f(2* ‘neN
o7 (n)ga-k(k)” om INC

This formula shows how to evaluate an n'"-order derivative of the power f(2)%.

n m

I f2? n-ay< O™ (n Nf(2
=0, f a a( ) ( )f a-m
LA (P DV W LT

/ineN

This formula shows how to evaluate an n'"-order derivative of the power f(2)%.

M f(2?

= (2% 6, +

k(p)

i=1

™ 2k(j m-1 .
nea (=M o O D N2z k) (m-1 no Pt k) m-1 5k £(2) ) g™ i1k £(2)
a( n )Z m[ )f() Z Z Z l_[[ = ) l—l P . /ineN

m=1 k1)=0k@=0  km-1)=0 \p=1 87" Zi

This formula shows how to evaluate an n'"-order derivative of the power f(2)%.

N f(2? n- =pm _
— ::6nf(z)a+a( 0 );1 m( )f()amzz Z‘Snz (n1+n2+...+nm;n1,n2,...,nm)n

n=0n,=0  nyu=0 k=1

neN
This formula shows how to evaluate an n'"-order derivative of the power f(2)%.
Positive integer powers

Nf@? &
g = Z( E) f 02 0z /;neN
24 k=0

This formula shows how to evaluate an n'"-order derivative of the square f(z)z.

n 3 n n-k;
7 - ) ( . )( ’ K . ) flg) @ @) ;neN
2

This formula shows how to evaluate an n'"-order derivative of the square f(z)3.

m 9% f(2) _

oz
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a"f(z) n 3 8412

Z Z Z Onky +hyrky (K1 + Ko + Ka; Ky, Ko, ks)l_l

ki=0k,=0ky=0

/ineN

This formula shows how to evaluate an n"-order derivative of the cube f(z)3.

anf(z4 n n-kg n—k;—ky _ ke
) _ Z Z Z (I:-)( n kl)( n |I((13 k2 ) f(kl)(Z) f(kz)(z) f(n—kl—k27k3)(z) f(kg)(z) /, nenN

0z ki=0k,=0 k;=0 ko
This formula shows how to evaluate an n'"-order derivative of the fourth power f(z)4.

a"f(z) n 4 8 f(2)

Z Z Z Z Oy +hprkgrky (K1 + Ko + K3 + Ky kg, Ko, ks, k4)1_[

ki=0k,=0k;=0k,=0

/ineN

This formula shows how to evaluate an n'"-order derivative of the fourth power f(2%.

mlo o op-ly m-1 gka) § (7 8n—2?:11k(j)f .
r[[n Zj_lk(])] ,() ()/;meN+/\neN
p=1 k(p) i1 020V | g3l

an(Z) n n-k1 " Z] 1k(1)

=0 2

k1)=0k@=0  km-1)=0

This formula shows how to evaluate an n'"-order derivative of the general integer power f(2™ /; me N*.

MNf" n m 9% f(2)

ZZ Zdnz Ny +Ny+...4+Nm; Ng, n2,...,nm)l_[

n;=0n,=0 k=1

/imeNt AneN

This formula shows how to evaluate an n'"-order derivative of the general integer power f(2™ /; me N*.

Negative integer powers

hol

@ (-1 (n oy M
=Mn+1 — f@ ‘neN*

a7 (+)k20k+1(k)() fne

This formula shows how to evaluate an n'"-order derivative of the reciprocal 1/ f(2).

n 1
n

0 ) n+ Z - ( ) k1
== — +
a7

k=1

Mk

/ineN

This formula shows how to evaluate an n'"-order derivative of the reciprocal 1/ f(2).

n 1

KD=0k2=0  km-1=0 {p=1 k(p) i=1 92 ki)

neN

This formula shows how to evaluate an n'"-order derivative of the reciprocal 1/ f(2).

oL m k) EEIKG) (et 1 1 ki S Y 0)
@ On N (=)™ n nonkd TR @fm o, ee ) (m a0 f2)) "R i)
= +(n+1 —( )f 2™ =1 ;
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N1
@ 6n (=T . m " f(2)
= +(n+1)2—( )f()”HZZ Z&nz (n1+n2+...+nm;n1,n2,...,nm)l_[ ineN
&4 f(Z) m=1 Mm=0m,=0  np=0 k=1

This formula shows how to evaluate an n'"-order derivative of the reciprocal 1/ f(2).

L og from function

a"log(f(2) n(=DRT ny 3
- ( ) /ineN

== d0nlog (f(2) +
07" ’ kZ:; kf(2" 07"
This formula shows how to evaluate an n'"-order derivative of the composition with logarithm log(f (2)).
d"log(f(2)
oz

m-2 . m-1, .
D™ oy O R M et ety ) (L gk £()) g R £(g)
dnlogf@)+ Y, —— (@™ D) D1 Y ﬂ[“ 2=t (‘)] [ = /ineN
m=1

1
KD=0k@=0  km-1)=0 \p=1 k(p) i=1 92"z )

This formula shows how to evaluate an n'"-order derivative of the composition with logarithm log( f (2)).

This formula shows how to evaluate an n'"-order derivative of the composition with logarithm log( f (2)).

Exp from function

PP c 2™

"
_@gmz Z( 1)1( ) 92’ 7?9(; /ineN

This formula shows how to evaluate an n'"-order derivative of the composition with exponential function exp(f(2)).

" 9?

a"g™!
— 92 Sn § E 1 i ( ) J : N
0" - [ * mm! b 9@ 07" ] fine

This formula shows how to evaluate an n"-order derivative of the composition with exponential function exp(f(2)).

O 92 | n

n! ; k.
--fg“)Z 2wy | [d7@ e

m=1ky+ 2Ky +...+ Nky=n l_[jzlj! ! kj! j=1

This formula shows how to evaluate an n'"-order derivative of the composition with exponential function exp(f(2)).

9" 9@

— = eW)Z Z( 1)“( )@Kz)q

Nk ETKO) (mege1 m-g-1 gk S Y 0))
n— ki g2 |0~ 92
PSRRI ol SRy [ﬂ( 2 <”]][n M)] | e
i=1

KD=0k2=0  km-g-1)=0 \ p=1 k(p) 9772
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This formula shows how to evaluate an n'"-order derivative of the composition with exponential function exp(f(2)).

" e9? i@
=92 |5, +Z Z( 1)1( )g(z)J Z Z Z énZ"H (M4 Mg+ o+ N g, s ) [ — |/
o0z" m=1 ! n;=0n,=0 = k=1 azn
neN

This formula shows how to evaluate an n'"-order derivative of the composition with exponential function exp(f(2)).

Function from power

a"f(za) n k (-1l@k-aj-n+1), fOR)

=>> — sineN

k=0 j=0 jl(k—j)rznak

This formula shows how to evaluate an n"-order derivative of the composition with power function f(2).

6”]‘ 2k- n+l)2(n K

f9(Z)ineN

n
o (n-k!(@22™ -kl @22

This formula shows how to evaluate an n"-order derivative of the composition f(z%).

f(2)

n(m-1! /n 1
__f( ]5n+( " 7( )f‘k)(—]/;neN
97" (k- 1)1 2 K z

This formula shows how to evaluate the derivative of the n"-order of the composition f(1/2).

a“f(\/—)

- (k)z(n k)

k:O(n k)'(2\/_)

f(k)(\/?) sineN

This formula shows how to evaluate an n'"-order derivative of the composition f(w/? )

Function from exponent

anf(€2) n
=S f¥(eh neNt
0z =0

This formula shows how to evaluate an n'"-order derivative of the composition f(e?).

o f(a?)
iz

n
=1log"(a) Zakzs(nk’ f0@) /;neN
k=0

This formula shows how to evaluate an n'"-order derivative of the composition f(a?).
n
anf(el/z) n (n—1)!(k) K

= f(e¥?)6n+ (-D" Y ——— ) ™2 S F ™ (¥ ineN
praniei G g‘(k_l)!zkmn% i 1™(et)
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This formula shows how to evaluate an n'""-order derivative of the composition f(e*?).

n k
() n (n—l)!(k)(blog(c)) K

mb
=f Cb/Z on + (—l)n cz S(m) f(m) Cb/z /ineN
P (c”) 6 k; PR ; 1)

This formula shows how to evaluate an n'""-order derivative of the composition f(c"?).

a“f(eﬁ) =-Zn: D" K2 (n-i9 Z m\/_S(m) f(m)( )/;neN

87" k=0 (n — k)y(z\/—)

This formula shows how to evaluate an n'"-order derivative of the composition f(eﬁ).

6”1‘ N 2K-n+1)5pn k
2 )Z mZZSLm) f(m)(ezz)/;neN
o (N-K!1(22"2* 15

This formula shows how to evaluate an n'"-order derivative of the composition f(e22 )

" fle n k (-Di@ak-aj-n+1), k
_ Z( )’ (@ J +1), Zemzast(m) f(m)(eza)/;nEN

k=0 j=0 jl(k—j)rznak =0

M

This formula shows how to evaluate an n"-order derivative of the composition f(e?).

anf(cbf)

1, (=)™ (K (r-i (010g(©)" Z ¢mVE S F(SVT) fine N
(S
k=0 (n—k)!(Z\/z) om0

This formula shows how to evaluate an n'"-order derivative of the composition f(cb \/7)

" f(cbz2 (2k =N+ 1)y, (blog(e))*

n
mbz2 (M) £(m) bz2
S f /ineN
pary (n-k! @23 n;) ( )

This formula shows how to evaluate an n'"-order derivative of the composition f(cb 22).

a“f(cb n k (-Di(-aj+ak- n+1)n(blog(c))

_ ZZ Z mbza S(m) f(m)(cbza)/ neN

k=0 j=0 jlk—jrzmak m=0

This formula shows how to evaluate an n'"-order derivative of the composition f(c°%).

Function from trigonometric functions
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" f(sin(2)) )
————— =f(sn@)on +
0z
n o1 m-1 J
Z—' Z( )Z( 1l 2 Msin@) (j+ 21 - m)" exp(——(nn (G+2l-m (- 22)))( | )f(m)(sin(z)) /ineN
m=1 M =0 1=0

This formula shows how to evaluate an n'"-order derivative of the composition f(sin(2)).

fEin) O f<m)(sin(z))(6”(sin(y)—sin(z))m

= - z}] /ineN*t
42" ay"

!
=1 m!

This formula shows how to evaluate an n'"-order derivative of the composition f(sin(2)).

m-j
Z 2i"Mcosl(2) (j + 21 - m)" e“*z"m)“(
=0

o" f(cos(2))

n o1 m-1 m
2 Sotin Y -11(.]
p= (COS(2)) 6y + i ;m! j;( ¥ [

This formula shows how to evaluate an n"-order derivative of the composition f(cos(2)).

m-— |

| )] f(m’(COS(Z))] /ineN

" fcos2) &, f™M(cos(2) (I"(cos(y) - cos(2)™
> [ /-ty

_ —>z}] /ineN*
Erd ay"

!
m=1 m:

This formula shows how to evaluate an n'"-order derivative of the composition f(cos(2)).

Function from hyperbolic functions

A" f(sinh(2))
92"

f(sinh(2)) & + (- 1)"2 ’Z( )Z( D 2" sinhl ) (j + 21 - m)”e—(i+2|—m>2(ml_1)f““)(sinh(z))/;n€N+

This formula shows how to evaluate an n'"-order derivative of the composition f(sinh(2)).

N+

A f(sinh(z) &, (8" (sinh(y) — sinh(z)™ fM(sinh(2))
-3 ) D
m=1

Ay- z
0z ay" Y

This formula shows how to evaluate an n'"-order derivative of the composition f(sinh(z)).

o" f(cosh(2))

— f(cosh(z))én+z [Z( 1)'( )ZZJ ™ cosh!(2) (2i + j — m)"@z”imﬂ(mi_J)f(m)(cosh(z))] /ineN

This formula shows how to evaluate an n'"-order derivative of the composition f(cosh(2)).

" f(cosh(2)) n - £M(cosh(2)) [6” (cosh(y) — cosh(z)™

_ . : N*
Py oy /{y—»z})/ne

!
m=1 m:

This formula shows how to evaluate an n'"-order derivative of the composition f(cosh(2)).

General compositions
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"t

" m-j
PES Z [Z( 1>J( )9()1%]f(m)(g(2))/;neN

This formula shows how to evaluate an n'"-order derivative of the general composition f(g(2)).

n m-j

r1(92)
= f(g())6n+z {Z( 1>J( )g(z)J

m:l

] f™(@g2)/;neN

This formula shows how to evaluate an n'"-order derivative of the general composition f(g(2)).

"t fMg)n!
N Dz /- +
2 2 Oma — [ [¢"@" ;inen

oz m=1Ky+ 2Ky+...+ Nky=n Mt l_[?:lj! J kj! j=1

Thisformulais called Faa di Bruno's formula.

6"f(g(2)) 0 n

n  n-k() nfzfj‘:ffzk(i) m-g-1 p-1, . m-a-1 5K) @ anizjr:lq—lk(j) @
> 2 2 | (n_zj=l k(J)] [ g. ] — 19 fMg@) ineN
KD=0k2=0  km-q-1)=0 \ p=1 k(p) i1 020 97 I ki

This formula, Faa di Bruno's relation, shows how to evaluate an n'"-order derivative of the general composition

f(9(2).
9"f9@2) fg2) 60 +
o "
n ™ 5% £ (2)
Z f(m)(g(z))Z( 1)1( )g(z)l ZZ Z 5nzk_ (N + M+ .+ Ny s Ny, nz,...,nm)l_[ P ineN
m:l n=0m=0  ny ;=0 k=1

This formula shows how to evaluate an n'"-order derivative of the general composition f(g(2)).

General power exponential compositions

" f(Z)g(Z)
or

% (é +Z Z( (") e tot@) SN S e 1y KD K@+ KM= KD,
m=1 m!

k(1)=1k@2=0  k(m-j)=0
s S S S
(h) DD I IR
@" q1)=0q@2=0 (=0

I 5g(2) ]
/in
Al

m=j k() ()
2), ...,k(m—]))HZ( )[55

i=1 s=0

h 6% f(2)
(AD) +92) + .. + o); 4D, 42, .., a) [ | —
iog 0210

This formula shows how to evaluate an n""-order derivative of the general power exponential composition f(2)%®.

eN
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n 1 m1 )
z 5n*2;z(‘1)'( )(zlog(z))‘ Z Z Z 0, sy KD+ KD+ o+ kM=) kD), k), ..., kM=)
m=1""" j=0

k1)=0k2=0  k(m-j)=0

l_[ (k) Sih1. + Sy) 27 + log(@) ((D) S + ZSK(I)))] fineN

This formula shows how to evaluate an n'"-order derivative of the general power exponential composition 7.

I nver se function

o) n f(l)(f( l>(z))
fD2) =6, F V@ + (F (V@) Z Zé Ji-njnm1 1)Z2l n+ZJ ~1|! ]—[ ———| /ineN

=0 jn=0 =2 i it it /(£ (2)
This formula shows how to evaluate an n"-order derivative of theinverse function -2 (2).

Repeated derivatives

9 *f(2
— —(f =Y S8¥X " nen
i 9z [ (Z ( (Z))]] Z 9 "e
ntimes

This formula shows how to apply n times the operation z f—z to the function f(2).

0 (2
—a) — a) — (f = E SYiz-a neN
(z )82( [(Z ) ( (Z)))] (z-a)X pur ——/ine

k=0

ntimes

This formula shows how to apply n times the operation (z— a) - to the function f(2).

Fractional integro-differentiation

f(t) (z—t)n*’"‘l
n| (z
g [fo T(n+a) dt

] n=|Re(-a)]+1ANRe(-a) <0

Y f(z
2 _ .
0z 2 (1) (z-ty o1
b T dt True

The o'" fractional integro-derivative of the function f(z) with respect to z is defined by the preceding formula,
where the integration in Mathematica should be performed with the option Gener at eCondi t i ons- >Fal se:

a+n-1
| nt egr at e[%, {t, 0, z}, GenerateConditions - Fal se. This definition supports the

Riemann-Liouville-Hadamard fractiona |eft-sided integro-differentiation at the point O.

8 f(2) 2 f(t) (z—t)"¢ 1
:f dt/;Re(-a)>0
0

0z I'-a)
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This formula for the o' fractional integro-derivative represents the fractional integral of the function f(z) with
respect to z. Thisintegral is called the Abel integral.
z i @™ot
" f(2 6n( 0 T(h+a) dt)
or a7

/;n=|Re(-a)] + LARe(—a) < 0

This formula for the o' fractional integro-derivative actually represents the fractional derivative of the function
f(2) with respect to z. This derivative includes the composition of the corresponding usual n'" derivative of order
n= |Re(—a)] + 1 and an Abel integral.

0" (X0 Z¥) k! g 2

0~ kzgr(k—ml)

=S}

This formula shows how to evaluate the o' fractional integro-derivative of the analytical function near the point
z==0.

o |Ogn(2) ka=—oo Cx Za+k o0
( — ) = Z C chg;(z, a+k Nz neN

k:—DO
This formula shows how to evaluate the o' fractional integro-derivative of a function having Laurent series
expansion, multiplied on log"(2) 22 near the point z == 0.

) J+k _ 2\ K-«
= y 12 = zZ—
po 2.2 R L@ =) a@-2)

k=0

This formula shows that for the evaluation of the o' fractional integro-derivative of the analytical function f(2)
near the point z== 7, you need to re-expand this function in a series near the point z== 0 and then evaluate the
corresponding integro-derivative.

Integration

Indefinite integration

For thedirect function

Integration of the derivative gives the original function.

f(f(z)ig(z))d’z::ff(z)clz:rfg(z)dz

The integral of the sum gives the sum of theintegrals.

fcf(z)dz::cff(z)cﬂz
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The constant factor can be placed outside of the integral.
ff(g(Z)) g@dz= ff(W) dw /; w==g(2)

This formulareflects the changing variables rule in the integral.
ff(Z) g@dz=1292 —fg(Z) f'(2dz

This formulareflects the integration by partsrule.

"9(2) M2 n-1 &2 g
ff(Z) de:(—l)nf g(Z)d/Z'FZ(—l)k AN
oz oz o 9& 9kt

Thisformula reflects the generalized integration by partsrule.

ff(Z)d2= quk(z) dz/, 1@ =) w@
k=0 k=0
The integral of the sum is equal to the sum of the integrals of the summands (under some restrictions for conver-

gence of the occurring infinite series).

a Z

o 1 0
ff(Z)clz:Z /; |2|<r/\[f(2) =>a/l<r
k=0 k+1 k=0

The integral from the power seriesis equal to the sum of the integrals from each term of the series (inside some
circle of convergence).

Repeated indefinite integration
Z(Z_t)nfl
fd’z(... (fdz(f(z)))] ==f f(t) dt
o (n-1)!

This formula reflects repeated indefinite integration, where the integration in Mathematica should be performed

with the option GenerateConditions ->False: Integrate] <(Zn’f1>;!1 frty, {t, 0, z3,

CGener at eCondi ti ons - Fal se].

1 1 z(log(2) — log(t)"*
f—dz[...(f—d’z(f(z))])::f - =T fidt
z z 0 t(n-1)!

ntimes

This formula reflects repeated indefinite integration, where the integration in Mathematica should be performed

(Log[z]-Log[t])"*
t (n-1)! f [t

with the option Gener at eCondi ti ons -> Fal se: Integrate] {t, 0, z},

CGener at eCondi ti ons - Fal se].

Definite integration
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For thedirect function

. (b a.)2 k+1

b-a
f(t)dt = 29
f © Z4k(2|<+1)v [ 2 )

j=0

b
f 'ty dt=f(b) - f(a)

b b b
f(f(t)ig(t))dtzzf f(t)dtifg(t)dt
a a a

b b
fcf(t)dt::cf f(t)dt

ff(Z) gd@dz=1(2 g(Z)—fg(Z) ' (2dz

b g(b)
f fgt) gt dt = f f(rydr /;v=g(t)
a g

(@)

a b
ff(t)d’t::—f f(t) dt

b a

b C b
ff(t)dt::ff(t)duff(t)dt

a a c

b C C
ff(t)d’t+f f(t)d’t::f f(t) dt

a b a

bk+l ak+1
ff(t)d )/ f(2) = Zakz"

a
f fhot)dt == f(‘r)f gbtydt/;re (@b Agt]=0/;te(a b)
b

a b
fb fH g dt == uf gy dt /; min(f(t) < u < max(f(t))
a
Thisformulareflects the first mean value theorem.
a Q
f f)git)dt == f(a)f gt dt/;ae@b Af'H)<0OAf(t)=0/te(a b
b a

This formulareflects the second mean value theorem.

a b
[fogvat=1o [avat;pe@bAr®>0Afm=0/te@b)
b B

a @ b
ff(t)g(t)d’t::f(a)f g(t)d/’t+f(b)fg(t)d’t/;a/e(a, b)Af()>0/;te(ab)
b a a
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S b b B
f f f(t, z)dtdz::f f f(t,2dzdt
a a a @

f(t, 1) f(t, 7)
ff /tdr::ff —  drdt-7*f(x, ¥ /; xe (@ b)
t=-x (-1 t-x (-1

Thisformulais called the Poincaré-Bertrand formula.

fff(t 2dtdz= fff(t,z)dzdt
f [Zakc)]dz——z f a2 dz

Orthogonality

See Generalized Fourier series in the section Series representations.

Cauchy integrals

Lt-z

This formula is called the Cauchy-type integral aong the piecewise smooth contour L (which can be closed or
opened). The density function ¢(r) must be continuous along L, but it must also meet a more stringent test known
as the Holder condition. The function ¢(t) satisfies the Holder condition if, for two arbitrary points t;, t, on the
curve, |o(ty) — ¢(tr)] < Alt, — t1]* for some positive constants A and 0 < A < 1. The Cauchy-type integral is analytic
everywhere on the complex plane except on the contour L itself, which is a singular line for thisintegral. Since the
integral contains afactor (called the kernel) in theform of 1/(r — 2), it divergesat 7 == z for any zlying on L.

1 t +
th:{tg(z) zeD

2riJLt-2z ze D™

This formulais called the Cauchy integral formula for the Cauchy integral. It isvalid if L is a closed, smooth
contour enclosing the region D* on the complex plane, and the function ¢(2) is analytic over D*, continuous over
D* UL, and D™ represents the region outside of L.

Singular integrals

1 re®

d(2==— | —dt/;zelL

2niJiLt-2z
In this Cauchy-type integral, the singular point z belongs to the contour L and under the integrand function has a
nonintegrable singularity. That is why this improper integral is called a singular integral. It can be evaluated,
however, if a small neighborhood around this singularity t == z is removed from the path of integration. The corre-
sponding limit, as the size of the neighborhood shrinks to zero, is the Cauchy principal value of this divergent
integral. For example:

b (t) [ x=¢ (t) @)
P | —dt=Iim f —dt+ —dt)/ a<x<b
a

at—x -0 t—x x+el —
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In this example, # f represents the Cauchy principal value, and the contour L is simply a straight segment on the
real axisfrom ato b; in other words, L = (a, b). Rather than integrating from a through the point x € L to the point
b, you can integrate on the intervals (a, X — €) and (X + ¢, b) and then add these results to arrive at a value. By taking
the limit of this calculation ase — 0, you can state the principal value.

@® _ )
Pf—dt:: im —dt/;tg €L
Lt—to -0JL-1t—1p

This formula represents the Cauchy principal value of singular curvilinear integrals by the curve L with a circular
neighborhood |, centered on ty and of radius o, removed.

Sokhotskii formulas

General
1 Q)
2= — | —dt
2niJLt-2z
B2 — ®*[z] zeD*
D=\ 917 zeD

This formula represents the function ®(2) as a piecewise analytic function in the case when L is a closed, smooth
contour enclosing the region D* on the complex plane and D~ represents the region outside of L. If to e L , the
values ®* (tg) and O~ (tp) can be defined as the following limits:

Dt (1q) = limo@ /; ze D*AtpelL
@7 (1p) = Iirp 2/, zeD AtpelL
Z- 0
If L is an open contour with endpoints a and b, you can add an additional arbitrary curve segment connecting b to a

(with the sense that ®*(r) corresponds to the limiting value from the left) and assign ¢(r) = 0 along this new
segment. This extension allows you to apply the definitions for ®* and ®~ to open contours L.

@(to) 1 @)
Pty = —+ —P | —dt/itpel
2 2xi Jit—t,
@(to) 1 @(t)
d(ty)=-—+—P | —dt/itgel
2 2xi Jit-t,

These two formulas are called the Sokhotskii formulas. They were first derived by Y. V. Sokhotskii in 1873.
Because they were later given a more rigorous treatment by J. Plemelj in 1908, they are often referred to as the
Plemelj formulas. Sometimes the name Sokhotskii—Plemelj formulasis used.

. _ 1 (1)
T (tg) + P (tg) = — P | ——dt
T Lt-ty

D" (tg) — @™ (L) == ¢(to)

The second of these formulas can be obtained from the Sokhotskii formulas by addition and subtraction.
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In particular, if ¢(2) isanaytical over D* | L, then & (tg) == ¢(tp) and &~ (tg) == 0.

If the contour L isafinite or infinite segment of the real axis, L = (a, b), these formulas hold for al a < x < b, and
S0 B (X) = liMes 40 X+ i €), D™ (X) = liMe_g (X — i €). Thus ®(2) is an analytic function with a jump discontinu-
ity at L, and the size of the jump is determined by the Sokhotskii formulas.

Example: The exponential integral Ei

1 o @t
b2 = — —dt
2niJo t-2z

After evaluation of thisintegral, you get:

D(2) == -ri—Ei(@ Im2<0

-Ei(2 Im(z =0

P ni—-Ei@ Im2>0
ZJTE{

For arbitrary x > 0, the Sokhotskii formulas give the following values:

e* —-e*E X
PR = — ot —————
2 2ni

e X —eXEi X
R E N —
2 2n i
0 @ T

dr

1
X)) +DP (X)) = — P
ni 0 T—X

e *Ei(x)

OF(X) + D (X) = — ——
T

X)) —DP (X)=e ¥

It isimportant to note that for —co < z < 0, the function ®(z) is analytic and its limit values taken from either side of
the real axis should agree with each other. This givesthe relations:

lim (ri—Ei(x+ie€) =—Ei(X)

e-0"

lim (-mi-Ei(x-ie€)) = —Ei(X)

e>0"
Thisleads to the following behavior of Ei(x):

lim Eix+ie) =Ei(X)+7i

e->0"

lim Ei(x—ie) =Ei(X)—ni

e->0"

Example: Beta-type integral
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1 00 ta—l
®(2) == f dt
2riJo t-z

Thisintegral can be called a beta-type integral. It can be evaluated by the following formulas:

1 _xa-1
cb(z)::_{”( 29" cselamr) O<Rel@) <1lAag@+0

27i | -n2tcot(enr) O<Re(@)<1Az>0

For arbitrary x > 0, the Sokhotskii formulas give the following results when you take into account the fact that, as

€ - +0, (-2* tis continuous for —z= —x+ i € but has ajump of size e* ® * compared to when it is approached
from the other side, —z=—-x—i €.

- (=x-ie tesra) x@leiomesoanr) x@ g
Ot (x) = lim =- = + — cot(e ) X1
e0* 2i 2i 2
- (=x+ie® tesera) x*~1 '@ cse(a ) @l
O (x) = lim =- =- + — cot(a ) Xt
e0* 2i 2i 2
xleiames(a ) xlef @7 eso(a n) 1 oo ta-1
O (X) + D7(X) = - - — i xLoot(a 1) = — f dt
2 2 riJo t—x
xrletemcsg(anr) ¢ le o7 cso(a )
() — D" (X) = - =x1

2i 2i

Integral transforms

Exponential Fourier transform

Definition

1 00
FED] (2 = f f(t) 2 dt
V2m v

Thisformulais the definition of the exponential Fourier transform of the function f with respect to the variable t. If

the integral does not converge, the value of F[ f(t)] (2) is defined in the sense of generalized functions for functions
f(t) that do not grow faster than polynomials at + co.

Properties
Linearity

Filaf®) +bg®] (@ = a(F [ fH] @) + b (Fl9®)] (2)

This formulareflects the linearity of the exponential Fourier transform.
Reflection

FFED1 @ = FFD] (-2
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Thisformulais called the reflection property of the exponential Fourier transform.

Dilation

1 z
Filf@n] (@ = ﬁﬁ[f(t)](—)/; aeRAa#0
a| a

This formulareflects the scaling or dilation property of the exponential Fourier transform.

Shifting or translation

Flft-al@=e?*(FHIf1] @) /;acR

This formulareflects the shifting or translation property of the exponential Fourier transform.

Modulation

FHle ] @ =FlfM]@+2/;aeR
This formula reflects the modulation property of the exponential Fourier transform.

z+b
(Tt[f(t)] [—)—ﬁ[f(t)] [—]] faeRAbeR
a a

i

2]al

Filcos(bt) f(at)] (2) =

This formula reflects the modulation property of the exponential Fourier transform.

i z+b
— (Tt[f(t)] (—] - Flf®] [—]] ;jaeRAbeR
2]al a a
Thisformulareflects the modulation property of the exponential Fourier transform.

Power scaling

LA (2)
AT @ =i" ————— /;neN’

The power scaling property shows that multiplication of a function by t" corresponds to the n derivative of the
exponential Fourier transform.

f(t) oo 1 oo f(t) gfat
Fl—|@=i | AtOI@dz+ dt
t a 2 Y- t

This formula shows that multiplication of a function by t= corresponds to integration of the exponential Fourier
transform.

Multiplication
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FlfO W] (2 =

" (Frt )] 2 ) (790 () d =
m »f:m n n

The multiplication property shows that the exponential Fourier transform of a product gives the convolution of the
exponentia Fourier transform divided by v 27 .

Conjugation

FIFD] @ = (FRIFD](-2)

This formula reflects the conjugation property of the exponential Fourier transform.
Derivative
A O] (@ = (i" R O] @ /; lim foh=0/\o=k=n-1

The derivative property shows that the exponential Fourier transform of the n'" derivative gives the product of the
power function on the exponential Fourier transform.

Integral

t i
7| f f(0dr|@ = - (7l 1) @) + 9@ 62
a

This formula shows that the exponential Fourier transform of an integral gives the product of the power function
and the exponential Fourier transform plus an expression that includes a Dirac delta function.

Parseval identity

f H( g dt = f (L] 1) F D] O) dt

)

Thisformulais called the Parseval identity.

f HOIE f 17 Lf (0] ®)F dt

This Bessel’ s equality follows from the Parseval identity, when g(t) == f(t).
Convolution theorem

7| f ft-m gn dt| @ =V2r A0 @) FEgW] @)

This Fourier convolution theorem or convolution (Faltung) theorem for the exponential Fourier transform shows
that the Fourier transform of a convolution is equal to the product of the Fourier transform multiplied by v 27 .

Relationswith other integral transforms
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With inverse exponential Fourier transform

AF @O0 @ =

This formula reflects the relation between direct and inverse exponential Fourier transforms. In the point z == z,,
where f(2) has a jump discontinuity the composition of the inverse and direct exponential Fourier transforms

converges to the mean %(Iimz_mf f@) + Mg (D).
With Fourier cosine and sine transforms

] @+ n")’:st[ ] @

This formula shows how the exponential Fourier transform can be represented through cosine and sine Fourier
transforms from even and odd parts.

f(t) + f(=t) fty - f(-v

FTO] @ = Fo|

With Laplace transform

FlfM] (2 =

LT (-id+
V2n V2nr

Lf-D]G2

This formula shows how the exponential Fourier transform can be represented through the L aplace transform.

With Mellin transform

FF®] (@ =

Mi[f(=logt)] (i 2)
V2an

This formula shows how the exponential Fourier transform can be represented through the Mellin transform.

With Z-transform

A D tmac-m] o0 = ZolFm) (e

N=—c0

This formula shows how the exponential Fourier transform can be represented through the Z-transform.

Inverse exponential Fourier transform

Definition

1 = _
FHIM] 2 = f f(t)e 2 dt
Var J-e
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This formula is the definition of the inverse exponential Fourier transform of the function f with respect to the
variable t. If the integral does not converge, the value of 7 X[ f(t)] (2) is defined in the sense of generalized

functions.

Relations with other integral transforms
With exponential Fourier transform

FHEO] (@ = FRIF D] (-2)

This near-equivalence identity shows that the inverse exponential Fourier transform in the point z coincides with
the direct Fourier transform in the point —z.

FUID1 @ = AIT(-D] @

This near-equivalence identity shows that the inverse exponential Fourier transform in the point z coincides with
the direct Fourier transform in the point —z.

FAFI@I0]@ =@

This formulareflects the relation between the direct and inverse exponential Fourier transforms. In the point z== z,,
where f(2) has a jump discontinuity, the composition of inverse and direct exponential Fourier transforms con-

vergestothemean 3 (Iim,. 5+ f(2) +limzz- f(2).
Multiple exponential Fourier transform
Definition
1 00 00 )
Fipt) [f (1, 2]z, 22) = f f f(ty, tp) &' WA+ dty dt,
T J—cod -0

This formula is the definition of the double exponential Fourier transform of the function f with respect to the
variables ty, t5. If the integral does not converge, the value of F, v,[ f (t1, t2)] (z1, 22) is defined in the sense of
generalized functions.

n

l 00 00 00 .
Flttor. o) T 1 2 o )] (21, 22, -y Z0) == f f f f(ty by, ..., ) @ (LBt Zrttz) g dtydty
(271_)5 —oodJ —c0 —00

n-times

Thisformulais the definition of the multiple exponential Fourier transform of the function
f(t1, to, ..., tn) With respect to the variables ty, t,,..., t, over R". If thisintegral does not converge, the
valueof Fiy, ,,.. il f (t1, o, ..., th)] (21, 2, ..., Z,) isdefined in the sense of generalized functions.

Inverse multiple exponential Fourier transform
Definition

1 00 00 )
Fioy LF (t, )] (2, 22) = o f f f(ty, tp) e (122 gty dt,
T J—-cod -0
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Thisformulais the definition of the inverse double exponential Fourier transform of the function f with respect to
the variables ty, t,. If thisintegral does not converge, the value of ?‘[{l}tz}[f (t1, t2)] (z1, 2) is defined in the sense of
generalized functions.

l 00 00 00 )
?”[If,tz ,,,,, o [t ] (2, 22, Z0) = ff f f(ty, tz,...,tn)e‘“‘ﬂl“ﬂﬁm“ﬂ%)dtn...dtzdtl
(271_)5 —0oovJ —00 —00

n-times

Thisformulais the definition of the inverse multiple exponential Fourier transform of the function
f(ty, to, ..., tn) With respect to the variables ty, to,..., t, over R". If thisintegral does not converge, the

value of 7—‘{;1,%2 ,,,,, ol f (et . )] (Z1, 22, ..., Z) isdefined in the sense of generdized functions.

Relationswith other integral transforms
With multiple exponential Fourier transform

7‘—{;1]'} tn} [f (t]_, t2, vy tn)] (Z]_, 2, ..., Zn) == 7:{11,12,44-,%}“ (tl! t2, ceny tn)] (—Zl, —Zp, ..., —Zn)

,,,,,,

This near-equivalence identity shows that the inverse multiple exponential Fourier transform in the point z coin-
cides with the direct multiple exponential Fourier transform at the point —z.

Fourier transform (continuous — discrete)
Definition

2nmikt

1 L
Fed [ T(1)] (K ::—f fhe v dt/;keZz
VT o

General properties
Linearity

Fed[af(t) +bgt)] (k) = aFedy ([ f(O] (K) + b Fedy[gb)] (K)
Reflection

Fed 4 [F(-D] (K) = Fed 4 [F (O] (=k)

Dilation

Fedy[ 1(mb)] () = { (Feduatt ol () mhe e
0 True

Shifting or translation

2rnika

Fed4[ft-a)]k=e  Fed [fDO]K
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Modulation
Fedie T 10| = Fedy (1] (k-m) i me Z

Multiplication

1 (6]
Fed[TH) g®] (k) = F Z (Fedi [T O] () (Fed [9O] (K= j)
L j=—00

Conjugation

Fedy ([ F()] (K) = Fed ([T D] (k)

Derivative
af 2nik
Fedia| — =] 00 = —— Tl
Grouping
m-1 —jL
Fedi| ) f(T)] () = m(Fed [ f(O) (k) /; me N
j=0
Summation

& 1 k
Fedis| 3 ft-jbto= - [%dL;t[f(t>] [E]]

j=—oo

Parseval identity

L (&)
j(; f(momdr= Z (Fedi[FO]1 (D) (Fed L [9] ()

j=—o0

Convolution theorem

L
Fedys| fo fn gt -ndr|(9 = VL (Fediy 10 (K) (Fedilgt)] ()
Relations with other integral transforms
With inverse Fourier transform (continuous — discrete)

Fed, | Fed k[ 1] (0] (k) = F(k)
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Inverse Fourier transform (continuous - discrete)
Definition

1 & 2mikx

Fedjlf 0100 = — > floe

L ke-co

Relations with other integral transforms
With Fourier transform (continuous — discrete)
Fody | Fed 1 [ F 0] (0] () = f(k)
Fourier transform (discrete —» continuous)

Definition

2mikx

1 = _2rmikx
Fexlf0100 = — > e«
\/f k=—c0

General properties
Linearity

Fdc klatk) +bgk)] (x) = aFde k[ F(K)] (X +bFde[9K)] (X)

Reflection

Fdcr [ F(=K] () = Fdep [ F K] (=)

Dilation
m-1

X—jL
Fed Fm (0 = — 5 ((fdcuk[f(kn [—)) fimen’
m m

i=0

Shifting or translation

2mixm

Fdc k[ f(k-m1=e t Fde[fKIX)/;mez

Modulation

2niak

Fdeile T 1] 00 = Fderil f(9] (-2

Power scaling
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L dFdeyl f 0] ()
Fdelk fR](X) = —-— ———————
2ri 9X

Multiplication

1 L
Fdcrx[ (K 9K (X) = —f (Fdep [T (O] 1) (Fde k(9K (x— 1) dt
VL

Conjugation
Fde k[T (K] (%) = Fde w[F(K)] (—X)

Sampling

k 00
qu;k[f[[)] 0= (Fdeud F] (x- j L))

j=—c0

Zero packing
k

?ch;k[{ ;(5) T‘k |00 = (Fdeid to1 (M) ;meN*
rue

Parseval identity

S}

L
> fhah = fo (Fde il 1 (K)] (0) (Fdei[g®)] () dt

j=—oo

Convolution theorem

Faew| Y 1) 9k D] 090 = VL (Fderad F] 00) (Fdepilo®] ()

j:—oo

Relationswith other integral transforms
With inverse Fourier transform (discrete —» continuous)
Fde i FdcialF 0] 0] 00 = F(
Inverse Fourier transform (discrete - continuous)

Definition

1 L 2mikt
Fdc i f O] (= — | fe ¢ dt/ikeZ
Vi Yo
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Relations with other integral transforms
With Fourier transform (discrete -» continuous)
Fey | Fde [ 0] 0] (0 = F(x)

Fourier transform (discrete —» discrete)

Definition
1 8, ke
?ddm;k[f(k)](n)z—Zf(k)e m meN*AneZ
m k=0

General properties

Linearity

Fddmila f(K) +bg)] () = aFddmy[f (K] (N) + bFddm g1 () /; meN* AneZ

Reflection

Fddmy (=K1 (N) = Fddpy[ (K] (-n) ; meN* AneZ

Dilation

j-1
Fddm Tk DI () = > (Fddm[ f(O] (=1 M) ;meN" AneZ \jeN*
i=0

Fddmu T (K DI (N) = (Fddm[ TR (rn)) ;meN"AneZAjeZ Aged(j,m=1Ajr=1modm

ﬁdm;k[f(kj)](m:{Zg_;(%dw[f(rn( <) pmeN Anez /\jent Ajjm
0 True

Shifting or translation

2mijn

Fddmd fK= DI =e¢ ™ Fddm[fKIM) /;meN " AneZA\jezZ
Modulation
2nikj

Fdmy{e ™ 1] () = Fddml fR] (=) meN AneZAjez

Multiplication

1 m-1
Fddmy F(K) 9] (N) = — Z (Fddmil T (K] () (FddmylgK] (N= ) s meN"AneZ\jeZ
m j=0
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Conjugation
Fddmkl T (K] (N) = Fdd [ T (K] (1)
Repeat

Fiddmy 1001(F) [
0 True

Tddm;kmk)](n):{ fimeN AnezZA\jez

Zero packing

) gyt |
Tddm;k[ i ](n) = > Fddpy [ F K] (N) /;meN* AneZA\jeZ
0 True J

Summation
j-1

Fidmy Y fk=1m)] () = | Fddmi F K] (1) meN* AneZ AjeZ
i=0

Parseval identity

m-1

m-1
DN = )| Fddmyl 1 (W) () (Fddry 9K (1)) /; MeN* Ane Z
j=0 j=0

Convolution theorem

m-1
Fiddm| Y, 1) ok = D] () = VM (Fdyl £ ()] (0) (FildrlgK)] () /; mEN* An € Z

j=0

Relations with other integral transforms
With inverse Fourier transform (discrete - discrete)
Fdd | Fddrg; [ (D] (0] () = F(N) s meN* Anez

Inverse Fourier transform (discrete —» discrete)

Definition
1 & 2nikn

Fddp f10] ()= —— > f(e ™ /meN"Anez
m k=0

Relations with other integral transforms
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With Fourier transform (discrete — discrete)
Fddmy| Fddy; [F(D] 0] () = () /; meN* Ane z

Fourier cosine transform

Definition

2 00
Falf®] (@ = ,| - f f(t) cos(t 2) d't
Ve 0

Thisformulais the definition of the Fourier cosine transform of the function f with respect to the variablert. If the

integral does not converge, the value of F¢[ f (t)] (2) is defined in the sense of generalized functions.

General properties

Linearity
Felaf®) +bog®)] (@ == aFa[f ] (D + bFelg®)] (D

Thisformulareflects the linearity of the Fourier cosine transform.

Scaling

1 z
Falf@l (@ = - Falf®)] (—) /;a>0
a a
This formulareflects the scaling property of the Fourier cosine transform.

Modulation

z-b

1 z+b
Fer[cos(bt) f(at)] (2 = 2— (Tct[f(t)] (—) + Fe[ T(D)] [—)] /ia>0Ab>0
a a a

This formula reflects the modulation property of the Fourier cosine transform.

1 z+b z-b
Feldnbt) f@bhl (@ = — (TSt[f(t)] [—) = Fsf ()] [—)] /;a>0Ab>0
2a a a
This formula reflects the modulation property of the Fourier cosine transform.

Parity

ft+a)+ f(-t—-a) f(t-a-fa-t) ]
Tct[ > - > ](2) =8n@y (Fslf®] (@) /;aeR

This formula shows how the Fourier cosine transform can be applied to the difference between the even part of

f(t + a) and the odd part of f(t — a).
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ft+a) - f(-t—a) f(t-a)+fa-1)
%‘[ > + > ] (29 ==cos@? (Falf(H] (@) /;aeR

This formula shows how the Fourier cosine transform can be applied to the sum of the even part of f(t — a) and the
odd part of f(t + a).

Power scaling

. L P Falf )] @) R
Fo|t*" fV] @ = ()" ————/ineN
az"

This formula shows that multiplication of afunction by t2" corresponds to the 2 n"" derivative of the Fourier cosine
transform.

82n+1 Fs fO1(z
%t[t2n+1 f(t)] 2= (1" w sineN
622n+1

This formula shows that multiplication of a function by t>™* corresponds to the (2 n + 1)"" derivative of the Fourier
sine transform.

Derivative

2 n1
Fo[f20] @ = (1" 2" Falf©] @ - | = > (D2 122D /1 lim {90 =0 /\0<k=2n-1/\nen

This formula shows that the Fourier cosine transform of an even-order derivative gives the product of the power
function with the Fourier cosine transform plus some even polynomial.

2 n-1
Fe[ fe™DM] @ = D" 2™ Fs[f O] @ - [ — Z(—l)kz2k f@n-20q) /; t|im fOt) = o/\o <ks< 2n/\ neN
7T k_O —00

This formula shows that the Fourier cosine transform of an odd-order derivative gives the product of a power
function with the Fourier sine transform plus some even polynomial.

Convolution related

"f’ct[ fo f(@) (gt+7)+9(t-7) dr] @ =V2r (Falf®] (@) Falg®] (@)

This formula shows that the Fourier cosine transform of a convolution gives the product of Fourier cosine trans-
formsmultipliedby V27 .

Integral

00 1
7o f (@ dr]@ =~ Fl10l@)
t
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This formula shows that the Fourier cosine transform of an indefinite integral with a variable lower limit gives the
product of the Fourier sinetransformsby 1/ z.

Limit at infinity
lim (Fe[f(D](2) = 0

This Riemann-L ebesguetheorem shows that the Fourier cosine transform Fc¢;[ f(t)] (z) converges to zero as z tends
to infinity for some classes of the function f (t).

Relations with other integral transforms
With inverse Fourier cosine transform

Fo|Fe; [T 0] @ = @

This formula reflects the relation between the direct and the inverse Fourier cosine transforms. In the point z == 7,
where f(2) has a jump discontinuity, the composition of the inverse and the direct Fourier cosine transforms

converges to the mean %(Iimz_ﬂg f(2) + Mgz f(z)).

With exponential Fourier transform
Falf®] (2 = Falf(-H) 6(-t) + fO OD] (D)

This formula reflects the relation between the direct and the inverse exponential Fourier transforms.

With Laplace transform

Falf®] (2 =

Lf®] @2+
Van V2anrn

Lf®OI(-i2
This formula represents the Fourier cosine transform through Laplace transforms.
Inverse Fourier cosine transform

Definition

2 00
F O @ = [ = f f(t) cos(t 2) dt
m 0

Thisformulais the definition of the inverse Fourier cosine transform of the function f with respect to the variable

t. If theintegral does not converge, the value of F¢, l[ f(1)] (2) is defined in the sense of generalized functions.

Relationswith other integral transforms

With Fourier cosine transform
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Fe 0] (@ = Falf )] @
This formula shows that the inverse Fourier cosine transform coincides with the direct Fourier cosine transform.

Fourier sine transform

Definition

2 00
Fsi ()] (2 ==,/ - f f(t) sin(t2) dt
T 0

This formula is the definition of the Fourier sine transform of the function f with respect to the variable t. If the
integral does not converge, the value of Fs¢[ f(t)] (2) is defined in the sense of generalized functions.

General properties
Linearity

Fsilat®) +bg®)] (2 =aFs[f(1)] (2 + bFs(g®)] (2)

This formulareflects the linearity of the Fourier sine transform.

Scaling

1 z
Fsilf@l @ = - Fsil ()] (—) /;a>0
a a
This formulareflects the scaling property of the Fourier sine transform.

Modulation

1 z-b zZ+b

Fsi[cos(bt) f(at)] (2 = — [Tst[f(t)] [—] + Fs[F ()] [—]) /;a>0Ab>0
2a a a

This formula reflects the modulation property of the Fourier sine transform.
1 - z+b

Fsilsinbt) f(ah)] (@ = — [ﬁt[f(t)] [—) - Falf®)] [—]] /;a>0Ab>0
2a a a

This formula reflects the modulation property of the Fourier sine transform.

Parity

ft—-a+fa-t) ft+a-f(-t—-a) )
%t[ > - > ](Z) =s8n@2 Falf®l (@) /;aeR

This formula shows how the Fourier sine transform can be applied to the difference between the even part of
f(t — a) and the odd part of f(t + a).
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ft+a)+ f(-t—-a) ft-a-f@-t
Fsi . + | @=cosaa (Fsif0I @) /iacR

This formula shows how the Fourier sine transform can be applied to a sum of the even part of f(t + a) and the odd
part of f(t — a).

Power scaling

an P (Fslf(1](2)
F[t?" f1] (@ = ()" ————/ineN’
02"

This formula shows that multiplication of a function by t2" corresponds to the 2 n'" derivative of the Fourier sine
transform.

62n+l Fe fH1(z
%t[tZYHl f(t)] (2 = (_1)n+1 w /ineN
622n+l

This formula shows that multiplication of a function by t>™* corresponds to the (2 n + 1)"" derivative of the Fourier
cosine transform.

Derivative

2 n2
Fs[120] @ = (1" 2" Fslf©1 @+ = Y (~DF 2 127220 /1 lim f90) =0 /\0<k=2n-1/\nen

This formula shows that the Fourier sine transform of an even-order derivative gives the product of the power
function and the Fourier sine transform plus some odd-order polynomial.

2 n-1
Fs[ 2P0 @ = D" 2" FelfO] @+, | — Z(—l)k 2kl fen-2k-1q) /. lim fO(t) == 0/\ O<ks= 2n/\ neN

T k=0

This formula shows that the Fourier sine transform of an odd-order derivative gives the product of the power
function and the Fourier cosine transform plus some odd-order polynomial.

Convolution related

7s fo f(@) (@t - - gt + D) d 7| @ = V27 (Fsdf 0] @) (Falg®)] 2)

This formula shows that the Fourier sine transform of a convolution gives the product of the Fourier sine and the
Fourier cosine transforms multiplied by v 27 .

Integral

00 1
| f f(0dt]@ = -~ Falf O] @ - Tal (O] O)
t
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This formula shows that the Fourier sine transform of an indefinite integral with a variable lower limit gives the
difference of the Fourier cosine transformsin z and O multiplied by —1/z.

Limit at infinity
lim (Fs[f(0](2) =0

The Riemann—L ebesguetheorem shows that the Fourier sine transform Fs¢[ f(t)] (2) converges to zero as z tendsto
infinity for some classes of function f(t).

Relations with other integral transforms
With inverse Fourier sine transform

Fs| 75, (F 01 0] @ = f@

This formula reflects the relation between the direct and the inverse Fourier sine transforms. At the point z == 7,
where f(2) has ajump discontinuity, the composition of the inverse and the direct Fourier sine transforms con-

vergesto the mean%(limzﬂg f(2) +limyz f(z)).

With exponential Fourier transform

Fslf O] (2 =i Fs[f(-Do-t) - fH O] (2

This formula represents the Fourier sine transform through the exponential Fourier transform.

With Laplace transform

i i
L[f®)]GE2 -
2n Vanr

Lf®I(-i2

FslfO](2) =

This formula represents the Fourier sine transform through the Laplace transforms.

Inverse Fourier sine transform

Definition

2 00
Fsi 1F O] @ = | — f f(t)sin(t 2) dt
g 0

Thisformulais the definition of the inverse Fourier sine transform of the function f with respect to the variable t. If

the integral does not converge, the value of Fs; 1[ f()] (2) is defined in the sense of generalized functions.

Relationswith other integral transforms

With Fourier sine transform
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Fs ' (1] (2 = Fs [ F ()] (2

This formula shows that the inverse Fourier sine transform coincides with the direct Fourier sine transform.

Laplace transform
Definition
LI @ = f fhetat
0

This formula is the definition of the Laplace transform of the function f with respect to the variable t. If the
integral does not converge, the value of L[ f(t)] (2) is defined in the sense of generalized functions.

General properties

Linearity

Shift

Llaf®) +bo®] (2 ==aLilf®)] (@ +bLlgb] @

This formulareflects the linearity of the Laplace transform.

Lfe® f1)] (@ = LIf®]z+a)

This shift theorem shows that the Laplace transform of a product with an exponentia function gives the Laplace
transform in the shifted point.

Power scaling

MLIT®] @)

Lt f(t =-
(tTO1 @ 57

This formula shows that differentiation of a Laplace transform corresponds to multiplication of the origina func-
tion by —t.
MLIT®]1 )
Lt T2 =-)" ————/;ineN’
oz"
This formula shows that differentiation of a Laplace transform of order n corresponds to multiplication of the
original function by (-t)".

Product

y+i 0o

1
LlfOab] (2 = Py f (L[ fO1 ) (Llg®] -1 dT /[ Im(y) =0

i Jy-ico
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This formula represents the Laplace transform of a product f(t) and g(t) through the contour integral along a
vertical line from the corresponding product of Laplace transforms.

Derivative

n-1

LP0]@ =2 LIfO]@- ) 27 19
k=0

Thistime differentiation relation gives the representation for the Laplace transform of the first derivative.
n-1

L0 @ =2 LIf O] @ - ) 1190

k=0

This time differentiation relation gives the representation of the Laplace transform of the n" derivative.
Integral

t 1
o] | f@dr|@== cito@
0 z

This formula shows that the Laplace transform of an indefinite integral gives the product of the reciprocal function
of z by the Laplace transform of the function.

tf(7) (t— 1) 1
Lt[f —df] @=—(Llf®](@)/;neN
o (n-D! 2

This formula shows that the Laplace transform of the repeated indefinite integral

fox fot fot f(tydtdt... dt == foxf(t) (z:)ln; d't gives the product of the power function z™ on Laplace transform.

n-times
Convolution

t
| fo f(t-1) g d7| @ = (LI O] @) (L9 @)

The convolution theorem or convolution (Faltung) theorem for the Laplace transform shows that the Laplace
transform of a convolution is equal to the product of Laplace transforms of the convoluted functions.

Limit at infinity
limz(L[fD](2) = Iircp f(t)
Z-00 t—>0*

Theinitial value theorem shows that limit at infinity of the Laplace transform multiplied by z is the one-sided limit
of theinitial function at zero.

Limit at zero
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Iirg Z(LIf (D] (2) ztlim f(t)

The final value theorem shows that the limit at zero of the Laplace transform multiplied by z is the limit of the
initial function at infinity.

Sum

0

Lt[ >t Lk)] 2 =

K=—oo l-e

Llow oL -t f(1)] (2

2L
Relations with other integral transforms

With inverse Laplace transform
LILEHI@I0] @ =2
This formula reflects the relation between the direct and the inverse Laplace transforms.
LI L @10 @ =@

This formula reflects the relation between the direct and the inverse Laplace transforms.

With exponential Fourier transform

LIf®O1(@ =V 2r (Flo®) fB] @ 2)

This formula shows how the Laplace transform can be represented through the exponential Fourier transform.

With Mellin transform

L] (@ = M1 -t) f(-logt))] (2)

This formula shows how the Laplace transform can be represented through the Mellin transform.

With Z-transform

L] Y tmst-n|@ = Zilfmle)

N=—c0

This formula shows how the Laplace transform can be represented through the Z-transform.
Inverse Laplace transform
Definition

1 +i 00
L) (p) = — f H(t) etP dt
21 Jy-

L i 0o
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Thisformulais the definition of the inverse Laplace integral transform of the function f with respect to the variable
t.

1 +i 00
LHFO) () = — f Hb etP dt
21 Jy-

e i 0o

Thisformulaisthe definition of the inverse Laplace integral transform of the function f with respect to the variable
t.

(_1k Kk k+1 K
-1 I _ (0,0,k) _
Ly;t[fm](p)—lm[ " (p) £ [f(t)][p)

Thisformulais the Post-Widder form of the inverse Laplace integral transform of the function f with respect to the
variablet.

Multiple Laplace transform
Definition
Ly, 1) Ft, )]z, 2 ::f f f(ty, o) e 1222 gty dt,
0 0

Thisformulais the definition of the double Laplace transform of the function f with respect to the variablesty, to.

Lit ... tn}[f(tl,tz,...,tn)](zl,zz,...,zn)::f f f f(ty, to, ..., t) e 1222 T gty | dty dty
0 0 0

n-times

Thisformulaisthe definition of multiple Laplace transforms of the function f(ty, t,, ..., t,) with
respect to the variables ty, t5,..., t, over R".

Mellin transform
Definition
MIF®] (@ = f "o Lt
0

This formulais the definition of the Méllin transform of the function f with respect to the variable t. If the integral
does not converge, the value of M;[f(t)] (2) is defined in the sense of generalized functions. Usually, the integral

converges in the strip @ < Re(2) < 8, where @ and 8 depend on the function f(t) and can assume the values + co.
For example, M;[6(t - a)t°] () = - &7 . Re(z) < —Re(b).

b+z

General properties

Linearity

Milaf®t) +bg®)] (@ =aMlf®)] @ +bMIg®] @

This formulareflects the linearity of the Mellin transform.
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Scaling
Mf@n](@=a?*M[fH)](/;a>0

The operation reflects the scaling of the original variablet by apositive number ain a Méllin transform.

Power

1
Ml[f(?)] @ =M[fO](-2

Thisformulareflects the Mellin transform of the function f(1/1).

1 z
ML (2) = — ML F(D)] [—) fiax0AhaeR
al a
The operation provides the Mellin transform of the original variablet raised to areal power a.
Shifting
M ()] (2 = M F (D] (z+ )

The shift theorem gives the Mellin transform of a product of the original function by some power of t.

FMITD] 2

Milog?(t) f(H] (2 =
‘ P

The operation gives the Mellin transform of a product of the original function by a power of log(t).

Derivative
(n) . _ _ R z-k-1 £(k) — <k<n— +
M{FO0] @ = 1 - 2, ML FO] 2 ) /3 lim £+ 10t o/\osk=n-1/\neN

This formula shows that the Mellin transform of an n'" derivative gives the product of a polynomial and the Mellin
transform of the function.

a n
Mt[[t E) t0]@=1"Z Mlf®1@/nen

This formula shows that the Mellin transform of (t %)n f(t) gives the product of a power function and the Mellin

transform.
(9 n
Mt[[a t) f(t)] @=01-2" MIf®]I@/;ineN"

This formula shows that the Mellin transform of (g—t t)n f(t) gives the product of the power function and the Mellin

transform.
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" f(b)
t[ (9t”

|@=a-2, mif@1@/inen

AN (1)
o

This formula shows that the Mellin transform of gives the product of a polynomial and the Mellin

transform.

n —(=1)" Slim 2Rl f 0y = <k=n- +
ML 0] @ = 1" @, MIf©] @ /; im £+ 19 o \osk=n-1/AneN

This formula shows that the Mellin transform of t" f(™(t) gives the product of a polynomial and the Mellin
transform.

Integral

t 1
Mt[f f(r) d'r] @ =~ MIf®)z+ D)
0

This formula shows that the Méllin transform of an indefinite integral gives the product of —1/z and the Méellin
transform in the shifted point.

t T3 (T2 (_1)n
M[[ff f f(Tl)dTlde...(lTn] (2 = MIF®O](z+n)
o Jo Jo (Dn

This formula shows how the Mellin transform of a repeated indefinite integral gives the product of a rational
function and the Méllin transform in the shifted point.

o 1
Mt[f f(7) al‘r] @=— ML) (z+1)
t

This formula shows that the Mellin transform of the indefinite integral with a variable lower limit gives the product
of 1/z and the Médllin transform in the shift point.

&) 00 00 1
Mt[f f f f(Tl)dTld‘/Tz...drTn] (2) == —Mt[f(t)] (z+n)
t T3 YT, (Z)n

This formula demonstrates how the Mellin transform of a repeated indefinite integral with variable lower limits
gives the product of arational function amd the Mellin transform in the shifted point.

Convolution

o ] t
M| f - (@ g(—) dt|@ = M (] @) (Mg @)
(VN T

The Méllin convolution theorem shows that the Mellin transform of a Mellin convolution equals the product of the
Méellin transforms.

00 1 b-e(@+2
Mt[taf 1 £z g(r®1t) dr] 2 = ﬁ [Mt[f(t)] [—]] Mg (@+2)/;,c+0AceRAeeR
0 c c
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The generalized Mellin convolution theorem shows that the Mellin transform of the generalized Mellin convolution
isequal to the product of the Mellin transforms.

Parseval

0o 1 +i 00
j; fzngmdr = Z—f ML) (MigD] (1 -s) Z°ds

L Jy-ico
Thisformulais called Mellin—Parseval’ sformula.

00 1 y+i co
j; foamndr= Py MIFO1(9) Mlg®] (1 -9)ds

Tl Jy-ico
Thisformulais called Parseval’s formula

at+l

be 1 +i 00 a+s+1

00 S 1\S
f 2 fbr%gdrdr= (Mt[f(t)]( )) (Mt[g(t)] (——)) (dl/eb_g) ds/;c+0AceRAdeR
0 e

elc| E y—ico
This representation can be used for evaluation of the general class of integrals from products of Meijer G functions.

Relations with other integral transforms
With inverse Mellin transform

M MEIEDI®] (9 = f(9)

This formula reflects the relation between the direct and the inverse Mellin transforms. The following theorem
holds: if an analytical function f(s) satisfies the restriction |f(s)| < K IS in the strip @ < Re(2) < B with some
constant K, then the integral M;;ls[ f(s)] (t) is a continuous function of the variable t and is its Mellin transform in
this strip.

With exponential Fourier transform

MIED1@ =V 2r (FAf(e)] )

This formula shows how the Mellin transform can be represented through the exponential Fourier transform.

With Fourier cosine and sine transforms

fe ™) + f(eh) fe™) - f(eh)

MIf®1@ = V27 Fe| |@2+ivar 7

|@2

This formula shows how the Mellin transform can be represented through the cosine and the sine Fourier trans-
forms from the even and odd parts of the function.

With Mellin transform
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Lf®](@ = ML -1) f(-logt)] (2)

This formula shows how the Laplace transform can be represented through the Mellin transform.

Inverse Mellin transform

Definition
1 +i 0o
Ml f©] () = — f f(s9t>ds
' 27i Jy-ico

Thisformulais the definition of the inverse Mellin integral transform of the function f with respect to
thevariable s. If the integral does not converge, the value of M. L[ f(9)] (t) is defined in the sense of

generalized functions. The condition on y usually hasthefoIIOW| ng form: a < y == Re(s) < B, which
represents a vertical strip of convergence for the integral.

Changing the vertical strip of integration a < Re(s) < 8 leadsto a change in the original function
M;;g[f(s)] (t). For example, in the case of gamma function f(s) == I'(s) you have

M;;ls[l“(s)] t=e'/;y>0and M;é[l“(s)] t)=e'-1/;-1<y<0.
Multiple Mellin transform
Definition
Mg [ (t1, )] (21, 22) = fo fo fty, )G 2 dt dt

Thisformulaisthe definition of the double Mellin transform of the function f(ty, ty) with respect to
the variables tg, to.

00 00 00 _ _ 1
Mgl (s o )] (1, 22, o, 20 ==f f f f(ty, b, ooy ) B2 LT dtpy L dtp iy
0 0 0

n-times

Thisformulais the definition of the multiple Mellin transform of the function f(ty, tp, ..., t,) with
respect to the variables ty, to,..., t,.

General properties

Convolution

o (1) t
Mty fo — gl( 1)92( )dr] (21, 22) = (MU FO] @1 +2) (My, [0 1)] () (M, [Ga(t)] (22))

The generalized Méellin convolution theorem shows that the double Méllin transform of a Mellin generalized
convolution eguals the product of the Mellin transforms in the corresponding points.

~ (1)
t1'fz f l_[gk( )dT](Zl ), ..., Zy) =

T k=1

n

>

k=1

n
[ [Melotor @o

k=1

M E®)]
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The generalized Mellin convolution theorem shows that the multiple Mellin transform of a Mellin generalized
convolution equals the product of the Mellin transforms in the corresponding points.

Hankel transform
Definition
Hya[F(D] (D = f mf(t) vtz J,(t2)dt
0

Thisformulais the definition of the Hankel integral transform of the function f with respect to the variablet. If this
integral does not converge, the value of H,.[ f(1)] (2) is defined in the sense of generalized functions.

General properties
1
Hyt[Hy[F (@] (0] (2 = f(2) /; Re(v) > >

This formula shows that the inverse Hankel integral transform coincides with the direct Hankel integral transform
under the restriction Re(v) > — %

Hilbert transform
Definition
co f(t)

H[F®)] (%) == —P t—dt/ xeR
- X

Thisformulais the definition of the Hilbert transform of the function f with respect to the variable t for real x.

Inverse Hilbert transform
Definition
o f(t)

th[f(t)](x)————@ t—dt/xe[R
—ol—X

This formula is the definition of the inverse Hilbert transform of the function f with respect to the variable t for
real x. It coincides with the direct Hilbert transform multiplied by -1.

Relationswith other integral transforms
With Hilbert transform
HFO] (0 = —H[F(©)] (0

Z-transform

Definition
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Zlfmi@ =) fmz"

n=0

This formula is the definition of the Z-transform of the function f(n) with respect to the discrete variable n at the
complex point z.

General properties
Linearity

Znlaf(n) +bg] (2 = a(Znlf(M](2) + b(Zalg(M] (2)
This formulareflects the linearity of the Z-transform.
Shifting
Zolf(h-m] (@ =™ (Zalf(M] @) +Z" Z f(—k) 2
k=1
This formula reflects the shifting property of the Z-transform.
Zalf(h-m] (@ =™ ZlfMI @) /; f(-D=f(-2)=...=f(-m) =0
This formulareflects the shifting property of the Z-transform.
m-1
Zolfm+m] @ = 2"(Zalf M1 @) - 2" ) f Z*
k=0

This formula reflects the shifting property of the Z-transform.
Scaling

Zn[@" f(M1 (2 = Zalf(N)] ( )

V4
a
Thisformulareflects the scaling property of the Z-transform.

a m
Znln" f(M] (@ = (- [Z E) (ZnlfM]1(2) /i meN*

This formula shows that multiplication of afunction f(n) by n™ leads to repeated differentiation of the Z-transform.

_OM(Zalf (W] (@) .
Zn|(m fM] (@ = (-2 o /imeN

This formula shows that multiplication of a function f(n) by (n),, gives the product of (-2™ and the m" derivative
of the Z-transform.
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Product
VA
t

1
zm@mM®=£;Qmme%Mm[Dw

The Z-transform of a product of f(n) and g(n) is represented through a contour integral along a simple circle-type
contour L encircling the origin t = 0 counterclockwise. All the singular points of the function Z,[f(n)] (t) are
located inside the contour. All the singular points of the function Za[g(n)] () arelocated outside the contour.
Parseval
1
t

& 1
Zf(n)g(n)=fL;(Zn[f(n)] ) [Zn[g(n)l( ))dt
n=0

The Parseval theorem follows from the previous relation for z== 1. The integration is performed along a simple
circle-type contour L encircling the origin t = 0 counterclockwise. All the singular points of the function
Znl[ ()] (t) are located inside the contour. All the singular points of the function Z,[g(n)] (%) are located outside

the contour.

Correlation
oo 1 1
Z fKak-n) = ft"’ (Zalf(M] M) (Zn[g(n)] (?))d’t /ineN*
k=0 L

The property is called the cross correlation property of the Z-transform.

Convolution

Zn[z fogin- k)] @) = (Zalf(M] (@) (ZnlgM] @) /; g(-m) =0 AmeN*

k=0

The convolution theorem for the Z-transform shows that the Z-transform of a convolution sum is equa to the
product of the corresponding Z-transforms.

Limit at infinity
lm Zalfm] (29 = f(0)

The analog of the Riemann-L ebesgue theorem shows that the Z-transform Z,,[ f(n)] (2) at infinity tends to the initial
value f(0).

le Z(Zn[fM](2) =11/, f(0)=0

This formula shows that the Z-transform Z,[ f(n)] (2) at infinity behaves as f(0) + @
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Limit at one
IZirrll =D (Zalf(W] (@) = lim f(n)
This formula shows that the expression (z— 1) Z,[ f(n)] (2) near point z== 1 behavesas |im,_., f(n).

Derivative by parameter

[6f(n, a)] &= NZalf(n, ] (2)
"I sa B fa

This formulareflects the differentiation by parameter property of the Z-transform.
Limit by parameter
Zi[lim f0, 0| @ = lim Zalf(, @1 @
a-ay a-ay
This formulareflects the evaluation limit by parameter property of the Z-transform.

Integration by parameter

b b
Zn[f f(n, t) dt] @ =f Znlf(n, 0] (@ dt
a a
This formulareflects the integration by parameter property of the Z-transform.
Relations with other integral transforms
With inverse Z-transforms
ZiZEF I @ = f(2
This formula reflects the rel ation between the direct and the inverse Z-transforms.
Inverse Z-transform
Definition
1
zittoim=— [rorta
2nmi JL

This formula is the definition of the inverse Z-transform of the function f(t) with respect to the variable t at the

discrete point n. The contour integral is performed along a simple circle-type contour L encircling the origint =0
counterclockwise.

Weber transform

Definition
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Wil fO] (@ = f mt fO Gt V(D - Y, (2 I,(2) dt
1
Thisformulais the definition of the Weber integral transform of the function f with respect to the variablett.

Relationswith other integral transforms
With inverse Weber transform

Wit W, [fO10] (@ = @

The formula shows that the composition of the direct and the inverse Weber integral transforms gives the original
function in apoint of continuity.

Inverse Weber transform
Definition

00 tf(v, t
W, HI0, D] (@ = f L(Jv(tzwv(t)—vy(t 2)J,(t) dt
0 Jy (12 + Y, (t)?

This formula gives the formulafor the inverse Weber integral transform.

Summation

Finite summation

n
Zak:al+az+...+an
k=0

Thisformulais the definition of the finite sum.

n m n-m-1
Dac=)ac+ > auma/im=n
k=0 k=0 k=0

This formula shows how a finite sum can be split into two finite sums.

n n
Deay=a) a
k=0 k=0

This formula shows that a constant factor in a summand can be taken out of the sum.
n n n

Za@ij :Zakibk

k=0 j=0 k=0

Thisformulareflects the linearity of the finite sums.
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n n n
> log@o) = Iog[ﬂ ak] fi-m< Y ag@) <7
k=0 k=0 k=0

This formula represents the concept that the sum of logs is equal to the log of the product, which is correct under
the given restriction.

n

(=)

k=0

[n — Yoo AY(Z)
2ni|— | /;ineN

2n

n
> log(@) == log

k=0

This general formulais correct without any restrictions.

7 f t 1 T
E+Z(akcos(kx)+bksn(kx)) f o sjn(( ) )dt/ == — f f(t)cos(kt)aft/\bk f f(t) sin(kt) dt
2 i *ﬂ25|n(t) 2 -n

Thisformulais called the Dirichlet formula for a Fourier series.

" 5 1Z
Zak = ZaZk + Z k41
k=0 k=0 k=0
In thisformula, the sum is divided into the sums of the even and odd terms.

5 5 5]
Zak Za3k+ Z A3p+1 t Z A3k+2

In this formula, the sum of ay is divided into three sums with the terms azy, azk.1, and agy.o.

ST B %] %]
DA DAkt Y Akt ) ket ) Aakis
k=0 k=0 k=0 k=0 k=0
In this formula, the sum of ay is divided into four sums with theterms asi, asx;1, daks2, aNd A, 3.

n m—l[%J
Zak = Z Z Amks+ |
k=0 j=0 k=0
In this formula, the sum of ay is divided into m sums with theterms agk, amke1,---» 8mkem-2, aNd Amiem-1-
S-S5

k=0 j=0

This formula describes the multiplication rule for finite sums.

n 2 n n n n
[Zak bk] [Za&]Zbﬁ -7 (@b —ayby)?

k=1 k=1 k=1 j=k+1

Thisformulaiscalled Lagrange'sidentity.

67
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Infinite summation (series)

et ol o )

This formula reflects the definition of the convergent infinite sums (series) >, a. The sum Y7, ax converges

absolutely if ax = O(k™) /; r > 1. If & — 0 this series can converge conditionaly; for example, >}, (—1)"/kr
converges conditionally if 0 < r < 1, and absolutely for r > 1. If limy,, a # 0, the series 7 ; a« does not converge
(it isadivergent series).

00 m &S]
Dlac= D act ) aema
k=0 k=0 k=0
This formula shows one way to separate an arbitrary finite sum from an infinite sum.
Deay=a) a
k=0 k=0

Thisformula shows that a constant factor in the summands can be taken out of the sum.

k=0 =0 k=0

D{gg

Thisformulareflects the linearity of summation.
> log(ay) = Iog[]_[ ak] —n< Zarg(ak) =¥
k=0 k=0

This formulareflects the statement that the sum of the logs is equal to the log of the product, which is correct under
the shown restrictions.

[

k=0

lﬂ—Z?’:oarg(Zk)J
-2ni|—

ZlOQ(Zk) log >
Vs

Thisformulais correct if all sums are convergent.

2 00 1 T T
%+Z(a§+b§)::—ff(t) dt/, ff(t)cos(kt)dt/\bk__ ff(t)sin(kt)dt

Parseval's lemma reflects completeness in the trigonometric system {cos(kt), sin(kt)}.

Zak Za2k+za2k+l
k=0

In thisformula, the sum is split into the sums of even and odd terms.
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69

o0 [ee] [ee) (o)
Zak = Zaak + Zasku + 233k+2
k=0 k=0 k=0 k=0

In this formula, the sum of ay is split into three sums with the terms azy, aszk.1, and agy.o.

iak = iallk + ia4k+1 + iazmz + imk+3
k=0 k=0 k=0 k=0 k=0

In thisformula, the sum of a is split into four sums with theterms ayx, asks1, @4kr2, ad ag ks 3.

00 m-1 oo
Zak = Zzafnk+j
k=0 j=0 k=0

In thisformula, the sum of ax is split into m sums with the terms apk, amks1,---» Amkem-2, aNd amiksm-1-
00 m oo
Zak = ZZaj+km /imeN*
k=1 j=1 k=0
In thisformula, the sum of ay is split into msumswith theterms a1, amke2s--+» &nkem-1, 8d Amkem-
Sa)20= 55
k=0 j=0 k=0 j=0
This formula describes the multiplication rule for a series.
0 2 (s8] o0 o0 o0
Sian) <[ 54|33, 3, or-an
k=1 =

Thisformulais called Lagrange's identity.

Double finite summation

ii%Zii%

k=0 j=0 j=0 k=0

This formula reflects the commutativity property of finite double sums over therectangleO<k<m,0<j<n.

> - ZWMM—Z%mem

k=0 j=0

This formula shows how to rewrite the double sum through a single sum.
Sy a=da,

k=0 j=0 j=0 k=j

This formula shows summation over thetriangle 0 < j < k < min adifferent order.
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m-2j-1

m
&j = Z Z A2 k1,
j=

k=0

m p m P m
S-S e 3 S oz
k=0 j=k j=0 k=0 j=m+1k=0

This formula reflects summation over the trapezium (quadrangle) 0 <k<m, 0 < LEJ < j = p inadifferent order.

{nm

m p p m
S 3 =S YA 3 Sagipen
k=oj={%1J j=0 k=0 j_lrmTlJ k=0

This formula reflects summation over the trapezium (quadrangle) 0 <k<m, 0 < ['%lj < j < p inadifferent order.

m P P m
PIDLIED > 2 + ZZ iip=rm

This formula reflects summation over the trapezium (quadrangle) O<k<m, O<rk=<j < p,r eN" inadifferent
order.
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Double infinite summation

This formula reflects the commutative property of infinite double sums by the quadrant 0 <k, 0 < j. It takes place

under restrictions like a j == O((k? + Iz)_r) /; ¥ > 1, which provide absolute convergence of this double series.

Zzak] me/ bm—Zam]"'Za]m

k=0 j=0

This formula shows how to rewrite the double sum through a single sum.

ZZ S

k=0 j=0 j=0 k=0

This formula shows how to change the order in a double sum.

ZZ Sy

k=0 j=0 j=0 k=0

This formula shows how to change the order in a double sum.

Sy ai=)a,

k=0 j=0 j=0 k=j

This formula reflects summation over the infinite triangle 0 < j < kin adifferent order.

PILEDNILIEDNPILY

k=0 j=0 j=0 k=0 j=m+lk=j-m

This formulareflects summation over theinfinite trapezium O < j < k+ m A m> 0in adifferent order.
o 3] ® o

PIILTEDWILTN

k=0 j=0 j=0 k=0

This formulareflects summation over theinfinitetriangle 0 < j < LEJ in adifferent order.

=
I8

o 7]
DD %=

k=0 j

A2 j4k+1,j

™M
e

I\
1S
i
)
=
0
o

This formulareflects summation over theinfinitetriangle0 < j < Lk_TlJ in adifferent order.
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m o [2J7121+1 o m
IS TEDIPIY
k:oJ:H j=0 k=0 j= [T k:O
2 2
This formula shows the summation over the infinite trapezium (quadrangle) O <k <m /\ O=< LgJ < j inadifferent
order.
m o VTFTlJ 2j 0 m
DIDILTE EDIDRY
k:oj:{k%lJ j=0 k=0 j:lmTlJ k=0

This formula shows the summation over the trapezium (quadrangle) 0 < k <m /\ 0< L'“le < j inadifferent order.

m oo 2m—l[]EJ o m
PIDILEEDIDILIEDIPILY
k=0 j=2k j=0 k=0 j=2mk=0

This formula shows the summation over the trapezium (quadrangle) 0 <k <m, 0 < 2k < j in adifferent order.

rm-1 HJ m

m 0 00
ZZ%: . akﬁZZak,i

=0 j=rmk=0

x
O
T
x
Té
~

This formula shows summation over the trapezium (quadrangle) O <k<m, 0<rk < j, r e N* in adifferent order.

Triple infinite summation

o K3 ky=kg
ZZZWW PIPIPILTERE
ky=0k,=0ky=0 kg=0k;=0 kp=0

This formula shows how to change the order of summation in atriple sum.

Multidimensional infinite summation

oo Ky kg—kq ky—ky—ko

Z Z Z Z A ko kg kg = Z Z Z Z A, Ky kg ky—ky —ky—kg

ki =0kp=0ky=0k;=0 ky=0k,=0 k=0 kz=0
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This formula shows how to change the order of summation in multiple sums.
n-2
o K knky g
ZZ Zakkz DI Z T Y

k=0 ky=0 kn=0k; =0 k,=0 kn_1=0

This formula shows how to change the order of summation in multiple sums.

Products

Finite products

n n
[ Jac= exp[z Iog(ak)]
k=0 k=0

This formulareflects the property that the product is equal to the exponent from the sum of the logarithms.

n
ﬂ@ak = gzzzoak

k=0

Thisformulareflects the property that the product is equal to the exponent from the sum of the logarithms.

Infinite products

ﬁ & == eXp[i |Og(ak)]
k=0 k=0

This formulareflects the property that the product is equal to the exponent from the sum of the logarithms.

e}

neak = e

k=0

This formulareflects the property that the product is equal to the exponent from the sum of the logarithms.

Operations
Limit operation

(lim 2 = F) = (Veceo (20 (Vaocz-acs (21~ Fl < )
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This formulareflects the definition of alimiting value F for afunction f (2) at the point z= a, when z approaches a
in any direction (the so-called epsilon-delta definition): the formula F == lim f(2) means that the function f (2) hasa

Z-a
limit value F if and only if for al € > O, thereexistsd > O suchthat |[f (2 — F| < € whenever0 < |z — @ < 6.
A limiting value F does not always exist, and (if it exists) it does not always coincide with the value of the function
at the point z= a (the last value also may not exist). But in the "best situation”, when al the values exist and
coincide: F == f (2), and the function f(2) is called continuous at the point z = a.

(lim @ = F) = (Voo (oo (Vazs 1@~ Fl <)

This formulareflects the definition of alimiting value F for afunction f (2) at the infinite point z = co: the formula
F == lim f(2) means that the function f (2) has alimit value F if and only if for al € > 0, there exists ¢ > 0 such

Z-00
that |f (20 — F| < € whenever z > 4. A limiting value F may not always exist, and (if it exists) may not always
coincide with the value of the function at the point z= co (the last value also may not exist). But in the "best
situation”, when all the values exist and coincide: F == f (2), and the function f(2) is called continuous at the point

Z = o0,

Iing f(z+e) = f(2/; f(2 € C(C)

Thislimit shows that analytic functions are continuous functions.

f(z+e) - f(2
Iing — = f(»/, f@eCYO)
€ €

This limit defines the derivative of function f at the point z, if it exists. For analytic functionsthis limit exists.

1 n
lim — Z(—l)”-k(E) f(z+ke)= "2/ f (2 eCNC)AneN*

-0 En pry
This limit defines the n'" derivative of afunction f with an argument z.

f(z /(2
lim —2 —lim —2 / lim 12 = lim g2 = o\/limf@=limg@ = \/lim {2 = lim g@ = oo
Z-a g(z) Z-a g/(z) Z-a Z-a 7-a 7-a 7-a 78

L’Hospita’s rule appeared in the first textbook on differential calculus, Treatise of L’ Hospital, in 1696. It allows
you to evaluate the limit of the ratio of two functions lim,_,5 % through the limit of the ratio of their derivatives

@ . _ _
gT(Z in the cases when lim,.,, f(2) and lim,.,4 g(2) are equal to zero or =+ co.

b 00 00 b
[llm f f(t, Z) dt = f f(t, 2) d’t) = [ve(z)’e(z»o {36,6>0 [Vb’bxy f f(t, 2)dt —f f(t, Z) dt| < G(Z))))
booo Ja a a a

This formulareflects the definition of the convergent integral fa “ £(t, 2) dt at the argument z.

[1Mzq

b b
Iimf ft, 2dt=| lim f(t, 2dt
7 Ja a 2%
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This formula reflects the commutativity of the two operations definite integration and limit.

lim [Zak(z)] = Zlim a2
-7 e oo -7

This formula reflects the reordering of the two operations infinite summation and limit.
lim 2= [lima(z

fim ]k:!ak( ) ];!HO a2

Thisformulareflects the reordering of the two operations infinite product and limit.
lim f fsinkt)dt==0

The Riemann-L ebesgue lemma shows that sine coefficients of the trigonometric Fourier series tend to zero as

k - co.

T
II(im f(t)coskt)dt==0
—00 v

The Riemann-L ebesgue lemma shows that cosine coefficients of the trigonometric Fourier series tend to zero as

K- co.

Relations with other functions

With inverse function
f(f @)=z

This property is the definition of the inverse function Y (z) and can hold without additional restrictions on z (like
ze D, where D is not C) for many named functions. In these situations, f(2) isin most cases free of branch cuts.
For example, si n(si n‘l(z)) = 7 here sin"*means Y with f = sin, that is, the inverse sine function (do not confuse
this with the reciprocal function 1/sin).

Some of the functions f are invertible: their inversions 2 can coincide with the original f, but for other values of

the parameters. For example, the inverse function for the power function 2 is also the power function z¥2, and the

log(2
a

relation (2/2)" == z takes place only under the restriction —r < Im( ) <. In general cases the following relation

takes place: (zl/a)a = exp(212 an {% (n - Im('og’%))J) z
fV(f(2)=12/;zeD

The last property for the inverse function of the direct function can be valid under special restrictions for z (where

typicaly D is not Q). For example,
cos(cos(2)==2/;0<Re(2) <7V Re2 =0AIm@2 =0V Re(@ =7 A Im(2 < 0.



http: //functions.wolfram.com

Inequalities

Algebraic inequalities

[Zakbk]z = [iaﬁ][ibﬁ] /;aceR AbjeR

k=1 k=1

Thisinequality is called the Cauchy—Schwarz—Buniakowskyinequality.

o

Thisinequality is called the Cauchy—Schwarz—Buniakowskyinequality.

n /p n /p
[Z(ak + bk)p] < [Zalf
k=1 k=1

Thisinequality is called Minkowski's inequality.

n
+[Zb§] ;aceRAbjeRAa=0Ab=0Ap>1
k=1

1/p

n p n n p
Z|ak+bk|”] s[Zw’ +[Z|bk|"] fip>1
k=1 k=1 k=1

Thisinequality is called Minkowski's inequality.

1/p 1/q
[iaﬁ] [ibﬂ] ziakbk/;ake[R/\bje[R/\akzO/\bij/\%+%==l/\p>l
pac kel kel

Thisinequality is called Holder's inequality.

Thisinequality is called Holder's inequality.

1 1
[, —+—=1/\p>1
q p /\

[ Zak][ Zbk]<_zakbk/akE[R/\b eERANa =g Ab=bui Al=sk=n-1

k=1
Thisinequality is called Chebyshev'sinequality.

a+b
TZ ab /;a>0Ab>0

Thisinequality is called the arithmetic-geometric inequality.

1/n

EZ«'ﬂ@[]—[ak] iaeRAa >0
nia k=1
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Thisinequality is called the arithmetic-geometric inequality.

n n

ZZ(|ak—bj|p+|aj—bk|p—|aj—ak|p—|bj—bk|p)20/;0< p52/\ake[R/\bje[R

k=1 j=1
la+ bl < lal + bl

Thisinequality is called the triangle inequality.
la— bl = [la] - [b|

Thisinequality is called the triangle inequality.
Integral inequalities

b 2 b b
[ f f(t)g(t)dt) s[ f f(t)zdt)[ f g(t)zaﬂt]
a a a

Thisinequality is called the Cauchy—Schwarz—Buniakowskyinequality.

1/p
f|f(t>g(t)|dt<(f|f(t)|"dt] [f |g(t)|%lt] /—+— 1/\p>1

Thisinequality is called Holder's inequality.

b 1/p
[f|f(t)+g(t>|"cﬂt) s[f|f(t>|"dt) [f |g(t)|part] ip>1

Thisinequality is called Minkowski's inequality.
n b b N
ﬂf fk(t)dts(b—a)"’lf]—[fk(t)dt/; f=0Af()>0A1l<k=n
k=1v@ 2 k=1
Thisinequality is called Chebyshev'sinequality.

a b
absf f(t)dt+f f[tdt/; ') >0A f(0)=0Ab= f(@

0 0
Thisinequality iscalled Y oung's inequality.

f(t)dt<f f(t)g(t)aft<f ft)dt [ k= fg(t)aft/\f ®<0/\fv=0/\o=gn=1

b-k a
Thisinequality is called Steffensen'sinequality.

Predat ho Hodt .. [HO hodt

Pomhodt  HoPdt ... [Cho fodt o

Fhmfhodt [hobodt .. [ho’dt
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Thisinequality is called Gram'sinequality.

f gt dt
a

Thisinequality is called Ostrowski's inequality.

b
f f(t) g(t) dt
a

<|f(a)] max(

lasa= b}) /i (> 0N f(@ by = OA [f(@)] = (D)
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