Partitions

Notations

Traditional name

Number of unrestricted partitions of an integer

Traditional notation

$p(n)$

Mathematica StandardForm notation

PartitionsP[n]

Primary definition

\[p(n) = \left\lfloor \frac{1}{2} \left(\frac{n^{3/2}}{e} \right) \right\rfloor ; n \in \mathbb{N} \]

$p(n)$ is the number of unrestricted partitions of the positive integer n into a sum of strictly positive numbers which add up to n independent of order, when repetitions are allowed.

For example, $p(5) = 7$. There are 7 possibilities to express 5 as a sum of positive integers:

$5 = 1 + 4 = 2 + 3 = 1 + 1 + 3 = 1 + 2 + 2 = 1 + 1 + 2 = 1 + 1 + 1 + 1 + 1.$

Specific values

Values at fixed points

$p(0) = 1$

$p(1) = 1$

$p(2) = 2$
\[p(3) = 3 \]
\[p(4) = 5 \]
\[p(5) = 7 \]
\[p(6) = 11 \]
\[p(7) = 15 \]
\[p(8) = 22 \]
\[p(9) = 30 \]
\[p(10) = 42 \]
\[p(11) = 56 \]
\[p(12) = 77 \]
\[p(13) = 101 \]
\[p(14) = 135 \]
\[p(15) = 176 \]
\[p(16) = 231 \]
\[p(17) = 297 \]
\[p(18) = 385 \]
\[p(19) = 490 \]
\[p(20) = 627 \]
\[p(21) = 792 \]
\[p(22) = 1002 \]
\[p(23) = 1255 \]
\[p(24) = 1575 \]
\[p(25) = 1958 \]
\[p(26) = 2436 \]
\[p(27) = 3010 \]
\[p(28) = 3718 \]
\[p(29) = 4565 \]
\[p(30) = 5604 \]
\[p(31) = 6842 \]
\[p(32) = 8349 \]
\[p(33) = 10143 \]
\[p(34) = 12310 \]
\[p(35) = 14883 \]
\[p(36) = 17977 \]
\[p(37) = 21637 \]
\[p(38) = 26015 \]
\[p(39) = 31185 \]
\[p(40) = 37338 \]
\[p(41) = 44583 \]
Values at infinities

\[p(\infty) = \infty \]

General characteristics

Domain and analyticity

The partitions \(p(n) \) is a nonanalytical function which is defined only for integers.

\[n \to p(n) : \mathbb{N} \to \mathbb{N}^* \]

Symmetries and periodicities

Symmetry

No symmetry

Periodicity

No periodicity

Series representations

Generalized power series
\[p(n) = \frac{1}{\pi \sqrt{2}} \sum_{k=1}^{\infty} A(k, n) \sqrt{k} \frac{\partial \left(\sinh \left(\frac{i}{2} \sqrt{2} \sqrt{n - \frac{1}{24}} \right) \left(n - \frac{1}{24}\right)^{-1/2} \right)}{\partial n} /; \]

\[A(k, n) = \sum_{h=1}^{k} \delta_{\gcd(h,k),1} \exp \left(\pi i \sum_{j=1}^{k-1} \frac{j}{k} \left(\frac{h j}{k} - \left\lfloor \frac{h j}{k} \right\rfloor - \frac{1}{2} \right) \right) - \frac{2 \pi i h n}{k} \]

Asymptotic series expansions

\[p(n) \asymp \frac{1}{4 n \sqrt{3}} \exp \left(\sqrt{\frac{2}{3}} \sqrt{n} \left(1 + O \left(\frac{1}{n} \right) \right) \right) /; (n \to \infty) \]

Generating functions

\[p(n) = \left[t^n \right] \prod_{k=1}^{\infty} \frac{1}{1 - t^k} /; n \in \mathbb{N} \]

\[p(n) = \left[t^n \right] \left(\sum_{k=1}^{\infty} (-1)^k t^k \right)^{1/2} /; n \in \mathbb{N} \]

\[p(n) = \left[t^n \right] \frac{2 \sqrt{t}}{\sqrt{\theta_3(0, \sqrt{t})}} /; n \in \mathbb{N} \]

Identities

Functional identities

\[p(n) = \frac{1}{n} \sum_{k=1}^{n} \sigma_1(k) p(n - k) \]

\[p(n) = \sum_{k=1}^{n} (-1)^{k-1} \left[p \left(n - \frac{1}{2} (3 k^2 - k) \right) + p \left(n - \frac{1}{2} (3 k^2 + k) \right) \right] \]
Complex characteristics

Real part

\[\text{Re}(p(n)) = p(n) \]

Imaginary part

\[\text{Im}(p(n)) = 0 \]

Absolute value

\[|p(n)| = p(n) \]

Argument

\[\text{arg}(p(n)) = 0 \]

Conjugate value

\[\overline{p(n)} = p(n) \]

Summation

Finite summation

\[\sum_{k=1}^{\infty} \left(\frac{1}{2} \left(\sqrt{24n+1} - 1 \right) \right) (-1)^k \frac{p(n - \frac{1}{2} k(3k+1))}{\left(\sqrt{24n+1} + 1 \right)} = 0 \]

Infinite summation

\[\sum_{k=0}^{\infty} p(k) r^k = \prod_{k=1}^{\infty} \frac{1}{1 - r^k} \]

Representations through equivalent functions

With related functions
\[p(n) = \sum_{k=0}^{n-2} q(n - 2k) p(k) \]

Inequalities

\[p(n) \leq \frac{1}{2} (p(n - 1) + p(n + 1)); n \in \mathbb{N}^+ \]

Other identities

Congruence properties

\[p(5n + 4) \mod 5 = 0 \]

\[p(7n + 5) \mod 7 = 0 \]

\[p(11n + 6) \mod 11 = 0 \]

\[p(n) \mod (5^{k_1} 7^{k_2} 11^{k_3}) = 0; (24n) \mod (5^{k_1} 7^{k_2} 11^{k_3}) = 1 \bigcap k_1 \in \mathbb{N} \bigcap k_2 \in \mathbb{N} \bigcap k_3 \in \mathbb{N} \]

History

- G. W. Leibniz (1669) investigated the number of ways a given positive integer can be decomposed into smaller ones
- L. Euler (1740)
- S. Ramanujan (1917)
- G.H. Hardy (1920) introduced the notation \(p(n) \)
Copyright

This document was downloaded from functions.wolfram.com, a comprehensive online compendium of formulas involving the special functions of mathematics. For a key to the notations used here, see http://functions.wolfram.com/Notations/.

Please cite this document by referring to the functions.wolfram.com page from which it was downloaded, for example:

http://functions.wolfram.com/Constants/E/

To refer to a particular formula, cite functions.wolfram.com followed by the citation number.

 e.g.: http://functions.wolfram.com/01.03.03.0001.01

This document is currently in a preliminary form. If you have comments or suggestions, please email comments@functions.wolfram.com.