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Introductions to Arg

Introduction to the complex components

General

The study of complex numbers and their characteristics has along history. It al started with questions about how to
understand and interpret the solution of the simple quadratic equation 2 == —1.

It was clear that 12 == (—1)? == 1. But it was not clear how to get —1 from something squared.

This problem was intensively discussed in the 16th, 17th, and 18th centuries. As a result, mathematicians proposed
aspecial symbol—theimaginary unit i, which isrepresented by i = v -1 :

2 ==—1

L. Euler (1755) introduced the word "complex" (1777) and first used the letter i for denoting v —1 . Later, C. F.
Gauss (1831) introduced the name "imaginary unit" for i.

Accordingly, i2 == —1and (-i)? == —1 and the above quadratic equation has two solutions as is expected for a
quadratic polynomial:

== —1/, Z== Zl ::E’/\Z:: 22 = —1{.

The imaginary unit ¢ was interpreted in a geometrical sense as the point with coordinates {0, 1} in the Cartesian
(Euclidean) x,y-plane with the vertical y-axis upward and the origin {0, O}. This geometric interpretation established
the following representations of the complex number z through two real numbers x and y as:

Zz=X+iy ;XeRAyeR<=(X,Y)

z=rcos(¢)+irsin(¢)/;reRAr>0A¢eR,

wherer = 4/ X° + y? isthe distance between points {x, y} and {0, 0}, and ¢ is the angle between the line connecting
the points {0, 0} and {x, y} and the positive x-axis direction (the so-called polar representation).

The last formulalead to the basic relations:
r=vyx+y

X == COS( )

y=rsin(y)

y
@ = tan‘l(—) /i x>0,
X
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which describe the main characteristics of the complex number z == x + i y—the so-called modulus (absol ute value)
r, thereal part x, theimaginary part y, and the argument .

A new erain the theory of complex numbers and functions of complex arguments (analytic functions) arose from
the investigations of L. Euler (1727, 1728). In aletter to Goldbach (1731) L. Euler introduced the notation e for the
base of the natural logarithm ¢==2.71828182..., and he proved that e isirrational. Later on L. Euler (1740-1748)
found a series expansion for e?, which lead to the famous very basic formula, connecting exponential and trigono-
metric functions:

e'% == cos(g) + i Sin(y).
Thisisknown as the Euler formula (although it was aready derived by R. Cotesin 1714).

The Euler formula allows presentation of the complex number z, using polar coordinates (r, ¢) in the more com-
pact form:

z=re'? ;,reRAr=0Apel0,2n).

It also expressed the logarithm of complex numbers through the formula

log(2) ==log(n)+i¢/;reRAr>0A¢eR.

Taking into account that the cosine and sine have period 2, it follows that ¢ has period 2 7 i:
&' == ' 42D — cog(p + 27m) + i SIN(p + 271) == COS() + i SIN(y) == €' ¥.

Generically, the logarithm function log (2) is the multivalued function:

log(z) ==log(N) +i(¢p+27K) /;reRAr>0ApeR AkeZ.

For specifying just one value for the logarithm log (2) and one value of the argument ¢ for a given complex number
2, therestriction -1 < ¢ x for the argument ¢ is generally used.

During the 18th and 19th centuries many mathematicians worked on building the theory of the functions of com-
plex variables, which was called the theory of analytic functions. Today this is a widely used theory, not only for
the above-mentioned four complex components (absolute value, argument, real and imaginary parts), but for
complimentary characteristics of a complex number z== X+ iy ==r ¢‘¥ such as the conjugate complex number
Zz==x-1iYy and the signum (sign) z/r. J. R. Argand (1806, 1814) introduced the word "modul€" for the absolute

value, and A. L. Cauchy (1821) was the first to use the word "conjugate” for complex numbers in the modern
sense. Later K. Welerstrass (1841) introduced the notation |z| for the absolute value.

It was shown that the set of complex numbers and the set of real numbers have basic properties in common—they
both are fields because they satisfy so-called field axioms. Complex and real numbers exhibit commutativity under
addition and multiplication described by the formulas:

a+b==b+a
ab==ba.

Complex and real numbers also have associativity under addition and multiplication described by the formulas:
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(@a+b)+c==a+((b+0c

(abyc=a(bc),

and distributivity described by the formulas:
a(b+c=ab+ ac

(a+byc=ac+bc.

(The set of rational numbers p/q /; pe Z A\ q € Z dso satisfies al of the previous field axioms and is also afield.

This set is countable, which means that each rational number can be numerated and placed in a definite position
with a corresponding integer numbern/; n==1, 2, 3, ... . But the set of rational numbers does not include so-

called irrational numberslike V2 or z. The set of irrational numbers is much larger and cannot be numerated. The
sets of all real and complex numbers form uncountable sets.)

The great success and achievements of the complex number theory stimulated attempts to introduce not only the
imaginary unit i == V=1 in the Cartesian (Euclidean) plane (x, y), but a similar specia third unit j in Cartesian
(Euclidean) three-dimensional space {x, Y, z}, which can be used for building a similar theory of (hyper)complex
numbersw==x+iy+ jz

W=X+iy+jz/;XxeRAyeRAzeR<={XY, Z.

Unfortunately, such an attempt fails to fulfill the field axioms. Further generalizations to build the so-called
guaternions and octonions are needed to obtain mathematically interesting and rich objects.

Definitions of complex components

The complex components include six basic characteristics describing complex numbers—absolute value (modulus)
|Z|, argument (phase) Arg(2), real part Re(2), imaginary part Im(z), complex conjugate z, and sign function (signum)
sgn(2). It is impossible to define real and imaginary parts of the complex number zthrough other functions or

complex characteristics. They are too basic, so their symbols can be described by simple sentences, for example,
"Re(2) givesthereal part of the number 2" and "Im(z) gives the imaginary part of the number 2."

All other complex components are defined by the following formulas:
Xl =x/;xeRAX=0

[X| ==—=x/; xeRAXx<O0

12 == V Re(2)? + Im(2)?
A | z
rg(2) == —i og(—)
12

z=Re(2) —ilm(2
sgn(x)==1/; xe RAXx>0

sgn(x)=-1/;xeRAx<0
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sgn(0) == 0
z

sgn(2) == — /; z+ 0.
17

Geometrically, the absolute value (or modulus) of a complex number z==x+iy/; xe R Ay € R isthe Euclidean
distance from zto the origin, which can also be described by the formula:

X+iyl=VX+y .

Geometrically, the argument of a complex number z is the phase angle (in radians) that the line from 0 to z makes
with the positive real axis. So, the complex number z==x+iy/; xe R Ay € R can be presented by the formulas:

z==12 eiArg(z)

X+l7y== [XZ +y2 @éArg(x+iy)
R i tan-1
X+iy= R +y ey,

Geometrically, the real part of a complex number zis the projection of the complex point z on the rea axis. So, the
real part of the complex number z=x+iy/; xe R Ay € R can be presented by the formulas:

Re&(2) == |7 cos(Arg(2))

Re(x+iy) ==y x*+y* costan"'(x, y)).

Geometrically, the imaginary part of a complex number z is the projection of complex point z on the imaginary
axis. So, the imaginary part of the complex number z==x+iy/; X R A 'y € R can be presented by the formulas:

Im(2) == |7 sin(Arg(2))

Im(x+iy) =y X2 +y* sintan(x, y)).

Geometrically, the complex conjugate of a complex number z is the complex point 2, which is symmetrical to z
with respect to the real axis. So, the conjugate value z of the complex number z==x+iy/; x€ R Ay eR can be
presented by the formulas:

7 == |Z| e—iArg(z)
X—1Yy =X-1Y.

Geometrically, the sign function (signum) is the complex point sgn(z) that lays on the intersection of the unit circle
|zl ==1 and the line from 0 to z (if z+ 0). So, the conjugate value sgn(z) of the complex number
z=x+1iYy/; x€e R Ay € R can be presented by the formulas:

z
sgN@= —— /1 z#0

vV Re(2? + Im(2)?
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X+iy
sgn(x+iy) == ————/;{x, y} #{0, 0}.

VXe+y?

A quick look at the complex components

Hereisaquick look at the graphics for the complex components of the complex components over the complex z-
plane. The empty graphic indicates that the function value is not real.

Re[Re[z]] Im[Re[z]] Abs[Re[z]] Arg[Re[z]] Conjugate[Re[z]]

Im[Arg[z]] Abs[Arg[z]]

Arg[Conjugate(z]]

Connections within the group of complex components and with other function groups
Representations through more general functions

All six complex component functions z— |2, z— Arg(2), z- Re(2), z- Im(2), z- z, and sz » gn(2) cannot be

easily represented by more generalized functions because most of them are analytic functions of their arguments.
But sometimes such representations can be found through Meijer G functions, for example:
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Representations through other functions

All six complex components |z, Arg(2), Re(2), Im(2), z, and sgn(2) satisfy numerous internal relations of the type
f(2) == g(f1(2), 2), where f(2) and f1(2) are different complex components and g is a basic arithmetic operation or
(composition of) elementary functions. The most important of these relations are represented in the following table:

z 1Z] Arg(2 Re(2) Im(2) z
12l |2 == z&~FAT9D 2=V 2zRe® -2 |lZ=VZ-2izIm®) ||7=Vzz
Arg(2) |Arg(2 = —i Iog(é) Arg(2) = tan"}(Re(2), |Arg(2) ==tan"1(z- Arg(2) == %u‘(log(
—i(z-Re(2)) iIm(2), Im(2)) —2l0g(2)
Re(2) |Re( = 22;"22'2 Re(2) == 7 e 2/A0® (14 Re(2=z-ilm(2 Re(2) = ?
eZs‘Arg(z))
__ i(12°-2) __Z. _2iArg® - __ 22
Im@ |Im@ = — Im(2) = Zie?A92(1- |Im(2) =i (Re(2) - 2) Im@2 =27
eZiArg(z))
z Z== ? Z== @ 21A19D 7 2==2Re&(2) -z 2==2-2ilm(®
@ |sN(@ = = /;2#0 |sgn(2) = & A'9? Y@= ——— | =——= (W@ ==
2 V 2zRe(2)-72 \ Z-2izIm@2) \/g

Other internal relations between complex components of the type f(2) == g(f1(2), f2(2), 2), where f(2) and f;(2) are

different complex components that also exist. Some of them are shown here:

z 12l Arg(2 Re(2) Im(2) z
|2 z(cosArg(2) - 4= 4= srem
i SIN(Arg(2))
Arg(@ |Arg(2 =i (log(2) - cos(Arg(2)) = % sin(Arg2) = '”l‘% Arg() = 3 i (log(zz
log()) 2log(2)
Re(2 Re(2) == |7 cos(Arg(2) Re(@=1m(i 2 Re(2)==z+i1m(2)
Im (2 Im (2 =2 sin(Arg(2) |Im(2) ==-Re(i2 Im(2=i(z-Re&2
z 2= 2 2= |7 £~ A9 2==Re2) - i IM(2)
s (2) N2 = ———/;
Im(2)2+Re(2)?
z+0

Here are some more formulas of the last type:

12 == V Re(2)? + Im(2)?

Arg(2) == tan"Y(Re(2), Im(2))
Im(2)

Arg(2) = tan‘l(—) /iRe(2) >0
Re(2)

2 == 7 cos(Arg(2)) - i |zl Sin(Arg(2))
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Re(2) +ilm(2)

son(2) =

\/ Re(2)? + Im(2)?

sgn(x) = 6(x) —6(-x) /; xeR

sgn(X) ==26(x)—1/; xe RAXx+#0,

(here 6(x) is the Heaviside theta function, also called the unit step function).

Thefirst table can be rewritten using the notationsz==x+iy/; xe R Ay e R:

X+iy/; IX+iyl Argx+1iy) Re(x +iy) ImX+1iy)
xeRAyeR
IX+iy| X+2y| = X+iyl = X+iyl =
i —i Arg(x+i y)
(x+iy)e Vaoriyx—oriy? | v x+iy?-2i(
Arg(x +ivy) Arg(x+iy) = —i log| =2 Arg(x +iy) = tan"(x, Arg(x+iy) == tan™
—i(X+iy—X)) iy, y)
+i y)2 32 i
Re(x+iy) Re(xﬂ'y)::% Re(x+iy) = X+2y Re(X+iy)=(X+1i
e—ZiArg(xﬂy) (1+
eZiArg(xHy))
i (}+y2—(x+i y)? i
Im(x +i y) |m(x+z‘y)==%(:y)”> Imx+iy) = IM(X+iY) =i (X— (X+7y))
e—ZiArg(xﬂ y) (l _
€2§'Arg(x+s‘y))
- - X2+Y2 — —2i Arg(x+i y) - . - .
X+1iy X+iy=— X+iy=-¢e gockry X+iy=2X—(X+1iYy) X+iy=X+iy—2
X+iy
X+1iy)
SIN(X + i Y) SN(X+ i y) = ; / SON(X -+ Y) == e AT | sgn(x + i y) = SON(X -+ i y) =
v X%+ X+iy X+iy
{x v} #{0, 0} V 20x+i y) x-(+y?) V ()i Y220 (x+i Y)Y

The best-known properties and formulas for complex components

Real valuesfor real arguments

For real values of argument z, the values of all six complex components |z|, Arg(2), Re(2), Im(2), z, and sgn(z) are

rea.

Simplevalues at zero

The six complex components |z, Arg(2), Re(2), Im(2), z, and sgn(2) have the following values for the argument

z==0:

Arg(0) == (-, 7]

Re(0)==0
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Im0)==0
0=0
sgn(0) == 0.

Arg(0) is not a uniquely defined number. Depending on the argument of z, the limit |imy;_,o Arg(2) can take any
valueintheinterval (-, x].
Specific valuesfor specialized variable

The six complex components |z, Arg(2), Re&(2), Im(2), z, and sgn(z) have the following values for some concrete

numeric arguments:
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z 2l |Arg2 Re(2 |Im) |z sgn(2)
0 0 € (-mn] |0 0 0 0
1 1 |0 1 0 1 1
-1 1 |z -1 o -1 -1
i 1 g 0 1 —i i
—i 1 —’21 0 -1 i —i
1+ V2 |2 1 1 1—i bl
‘ 5
—1+i V2 |& -1 |1 —1-i =
N V2
-1-i V2 |- -1 -1 -1+ L
N Va2
1-i V2 |-% 1 1 |1+ Ea
N vz
V3 +i |2 z V3 |1 V3 -i |e®
1+iV3 |2 z 1 V3 [1-iV3 |e®
2in
-1+iV3 |2 | & -1 (V3 |-1-iV3 |e®
Sin
-V3+i |2 |Z V3 |1 V3 -i |es
Sin
-V3-i |2 —%” V3 |-1 |-V3+i |e s
2in
-1-iV3 |2 —%” 1 [=V3 |-1+iV3 |e =
1-iV3 |2 -2 1 V3 [1+iV3 |e 3
v3-i |2 -z V3 |-1 |V3+i |e®
2 2 |o 2 0 2 1
-2 2 |x —2 o 2 1
b bg 0 b4 0 Vs 1
3i 3 |3 0 3 -3i i
-2i 2 |-3 0 -2 |2i —i
2+i V5 ArcTan[%] 2 1 2_i 7;

Restricted arguments have the following formulas for the six complex components |z, Arg(2), Re(2), Im(2), z, and

Son(2):
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z 12l Arg(2 Re(2 |Im(@ |z sgn(2)
X/;xeRAx>0 X 0 X 0 X 1
X/;xeRAXx<O0 -X b X 0 X -1
x/ixeR VX tani(x, 0) |x 0 X =X
e
x+0
iy/;yeR %% tan'(0,y) |0 y -iy |i/;y>0
0/,y==0
-i/;y<0
x+iy/; V¥+y |tntxy |x y x—iy | =X,
xeRAyeR Vo2
{x, y} # {0, O}
reft?/;reRA r ¢+2n{%J rcosig) |rsin(g) [re ¢ |ef?
r>0OA¢eR

The values of complex components |z|, Arg(2), Re(2), Im(2), z, and sgn(2) at any infinity can be described through

the following:

z Izl |Arg(2 Re(®@ [Im(2) |z sgn (2
) o |0 ) 0 ) 1
—00 |0 |7 —00 0 —o00 |-1

. /g

ico |oo |2 0 o —ioo |1
—foo | oo —% 0 —0 |ico |-i
& oo | €(=m 7] | ¢ S A

& o |6 A A 1A A
Analyticity

All six complex components |z, Arg(2), Re(2), Im(2), z, and sgn(z) are not analytical functions. None of them

fulfills the Cauchy—Riemann conditions and as such the value of the derivative depends on the direction. The
functions |2, Arg(2), Re(2), and Im(2) are real-analytic functions of the variable z (except, maybe, z + 0). The real

and the imaginary parts of zand sgn (2) are real-analytic functions of the variable z.
Sets of discontinuity
The four complex components |z, Re(z), Im(2), and z are continuous functionsin C.

The function sgn(z) has discontinuity at point z== 0.

The function Arg(2) is a single-valued, continuous function on the z-plane cut along the interval (—oco, 0), whereit
is continuous from above. Its behavior can be described by the following formulas:

lim Arg(x+ie€)==Arg(x) == /; x< 0

e—>+0

lim Arg(x—ie€)=-n/; x<O0.
e—>+0

Periodicity
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All six complex components |z, Arg(2), Re(2), Im(2), z, and sgn(2) do not have any periodicity.
Parity and symmetry

All six complex components |z|, Arg(2), Re(2), Im(2), 2, and sgn(2) have mirror symmetry:

1z =12 Arg(2=-Arg2)/, z¢ (-, 0)

Re? =Rez Im@® =-Im@®

Z=2 sgn(2) =sgn(? -

The absolute value |7 is an even function. The four complex components Re(z), Im(2), z, and sgn(2) are odd func-
tions. The argument Arg(2) is an odd function for amost al z

Arg(-=2) = -Arg(2) /; ¢ (=, 0)

VT

Arg(-2) = Arg(2) - i

z
Re(-2==-Re(2 Im(-2=-Im(2
=Z==-2 sgn(-2) = -sgn(2).
Homogeneity
The six complex components |Z], Arg(2), Re(2), Im(2), z, and sgn(z) have the following homogeneity properties:
Azl =112
Arg(az ==Arg(z /;acRAa>0
Re(az) ==aRe(2) /;aeR
Im(az) ==alm(z) /;aeR
az==az
sgn(az) == sgn(a) sgn().
Scale symmetry
Some complex components have scale symmetry:
17 ==12"/;aeR
sgn(Z) == sgn(2? /; ae R.
Seriesrepresentations

The functions x| and sgn(x) with real x have the following series expansions near point X == O:
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4 = (_l)k—l 2
[X ::—Z Tok¥+ —/;xeRA-1<x<1
T Ake - T
® (=1 1\ 1
[X ::Z ( +—)(——] Pox(X) /; xeRA-1<x<1
o (k+1)! 2\ 2k
1 S (-D¢( 1
[X| == — (——) Hox(¥) /; xeRA-1<x<1
Vi @KL 2k
sgn(x ::—Z—H2k+1(x)/;xeRA—1<x<1
T k=0 22k(2k+l)k'
4 = (_lk—l
sgn(x ==—Z Toke1®/ixeRA-1<x<1
i 2k-

® (=D (4k+3)(2k!
sgn(x ==Z Pois1i(¥/; xeRA-1<x< 1
0 22l (k+ k!

Integral representations

The function sgn(x) with real x has the following contour integral representation:

sgn(x) == — ds/;0<y Ax>-2.

1 r+ico[(-s)(X+1)~°
m‘fy_m rl-s

Limit representations

The functions x| and sgn (x) with real x have the following limit representations:

h(X) = Pn(=X e
[X] == lim xw/;neN/\—l<x< 1/\pn(x)::l_[[x+e W].

n=e pp(X) + Pa(—X) k=0
an'T(m+ 2)Tm+n+2) sFof-m 2 —nm+n+2; 2 22
. 2 2 2' 2
sgn(x) == lim X /i-1<x<1lAneNAmeN
e Jr miT(n+ 3 o(men+2) sFo(-n -m-% men+ 3 L1
2 2 2 2’ 2

1 3.3 3 3,
ameD@nel)  Fs-mme2 Fonn+ 52 2 2
X /i-1<Xx<1lAneNAmeN.

sgn(x) == lim . -~
MH+N—co Vil .1 -2
4F3(—n, n+1, -m- > m+ 33 1, 1; x )

The last two representations are sometimes called generalized Padé approximations.

Transformations

The values of al complex components |z, Arg(z), Re(2), Im(2), z, and sgn(z) at the points -z, iz, —iz,az/;a€ R,

%, 2, €%, and ¢*Z are given by the following identities:
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z -z iz —-iz az/,ae
12 -2 =17 lizl =2 |—i7Z =2 lazl = a|

laz == -¢
vz ] . x  D)¥ryiz . P \7:”\/ —-iz
Arg(2 |Arg(-2 == Arg(2 — N in |Arg(iz) == Arg(2 - R Arg(—i 2 = Arg(2 + R — Arg(az =
Re(z) |Re(-2) == -Re(2) Re(i2)==-Im(2 Re(-iz)=1Im(2 Re(az) ==
Im@ |Im(-2 =-1m(2 Im(i2) =Re(2 Im(—i 2) == —Re(2) Im(@az ==
z =z=-2 iz=-iz Ziz=iz az=az
sgn (2) | sgn(—2) == —sgn(2) sgn(é 2) == i sgn(2) Sgn(—i 2) = —i sgn(2) sgn(az) =
sgn(az) =
z % 2 e ez
12 == || = |27 exp (-Im(a) Arg(2)) le?] = e i = e
Arg(@ Arg(%) =-Vzz! Arg2 |Arg@) =2nr {%@J +Im(alog(2) | Arg(e?) = Im(2) + 27 {%J Arg(e'?)
Arg(%) = —Arg2) /; Arg@) % 1
Re@ |Re()=" Re (22) = [ZRo® ¢~Im@ A1 Re(e?) = eR? cosIm(z) | Re(ei?) =
cos(Im(a) log(12)) + Arg(2) Re(@))
Im@ |Im (%) =- 'Tz‘% Im(2) == |77 M@ AGD Im (e?) == eR¥? sin(im(2)) Im(e'?) =
sin(im(a) log(I2) + Arg(2) Re(a))
2 g:: ; ? == (%)76\ F == ez E == @_i
son@ |son()=12 sgn (#) = 12'™@ exp (i Re(@) Arg(2) | son(e?) = &'™? sgn (¢'?)

The values of al complex components |z, Arg(2), Re(2), Im(2), z, and sgn(2) at the points z; + 2, z; 2, and z—; are

described by the following table:

4

z Zl + 22 Zl 22 -
2
12 121 + 2| == ||z1] = |2l + |21] + 22| = |21 — 25| 121 25| = |z4| |25 i—: = %
Arg(@) | Argz; +2,) = tan(Re(zy) + Re(z,), Im(zy) + Im(z,)) | Arg (21 2) = Arg(z) + Arg(zy) + Arg(2) = Argz) -
20 ln—Arg(zl)—Arg(zz)J 2
2n 2n l(n —Arg(zy.
Re(? |Re(z+2)=Rez)+Re(z) Re(z 2,) == Re(zy) Re&(2,) — IM(zy) IM(zy) Re(%) - %
IM@ |Im(z+2) = Im(z) + Im(z) IM (z; 2) = IM(z,) Re(z;) + IM(z;) Re(2,) | Im (%) - %
z L+, =Z+% IL=747% E:%
SN (2) | sgn(zy + ) == élzzl Sgn ( 25) == SYN(z;) SYN () sgn (%) = %
1742

Some complex components can be easily evaluated in more general cases of the points including symbolic sums
and products of z, k=1, ..., n, for example:
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14

n
[ =
k=1

n

Arg

k=1

Arg(z") =

e

[ =

=NArg(2 +2n

n
=] [z
k=1

n

= ZArg(zk) +2n
k=1

2n

T

n
= > Re@)
k=1

= 2221 Arg(zo)

/ineN*

m—nArg(2
7J fnen:

1]
Re(Z") == Z(—l)j (21 ) Im(2%) Re(2™21 /: ne N*
j=0

n
Im

k=1

>a

=) Im(z)
k=1

=, _ _
- Z (-1)] (2] . 1) Im2?* Re(2"2i1 /: n e N*

i=0

= [ [sonco.

The previous tables and formulas can be modified or simplified for particular cases when some variables become
real or satisfy special restrictions, for example:

z x2/ixeRAX>0 Z2/,aeR eV i xeRAyeR
2| b= xR 12| = 12° |eX+Y] == &
Arg(2) | Arg (@) == tan"*(cos(Im(a) log(x)), |Arg(?) == aArg(2) + 27 [”_aZA;g(Z)J Arg(e*Y) = tan™* (cogty), Sin(y))
sin(im(a) log(x)))
Re(2) |Re(x®) = x*® cogIm(a)log(x)) |Re(Z) == |z?cos(atan'(Re(2), IM(2))) | Re(e**"Y) == e* cos(y)
Im@ |Im(@) = xR sin(Im(a) log(x)) Im(2) = |z* sin(atan™ (Re(2), IM(2))) |Im(e**Y) = e* sin(y)
z X3 == xR@ (cos(Im(a) log(x)) — Z = |72 (cogatan*(Re2), Im@)) - | &**Y = &Y
i sin(lm(a) log(x))) i sin(atan"\(Re(), Im(2))))
SIN@ | sgn(e) == x''m@ sgn(#) == syn(® sgn(e**Y) = 'Y

Arg(z1 ) = Arg(zy) + Arg(z) /; - < Arg(z) + Arg(z) < m
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Z

Arg( ) = Arg(z;) - Arg(z) /; —n < Arg(z1) — Arg(z) < .

%

Taking into account that complex components have numerous representations through other complex components
and elementary functions such as the logarithm, exponential function, or the inverse tangent function, al of the
previous formulas can be transformed into different equivalent forms. Here are some of the resulting formulas for
the power function z —» 2*:

|Z| == exp(i alm(log(2))) /;iae R

|Z| = exp(i aArg(2) /;iacR

17| = exp(Re(alog(2)))

1Z%] = exp(Re(@) log(12)) — Im(a) Arg(2))

7] == 127*® exp(-Im(a) tan *(Re(2), IM(2)))
Arg()=aArg(2) /;acRA-n<aArg2 <n

Arg(?) = Arg(e'"9%?) /;a e R

/s T
Arg(z) == Im(alol ;- Im(a) < R 0
0Z) = Im(@log@) /; ~-~ < Im(@) Iog(Z)/\ze Nz>

Ve Ve
Arg(2) == Im(a) log(|Z)) + Arg(2) Re@) /; — <Im(a) < /\ zeR /\ z>0
log(2) log(2)

Arg(#) == tan™}(cos(atan'(Re(2), Im(2))), sin(atan™*(Re(2), Im(2))))

—Im(al
Arg(A) =2n lw +Im(alog(2)
2n
m—Im(a)log(|z)) — Arg(2) Re(a)
Arg(?) = 27{ 5 J+ Im(a) log(|2) + Arg(2) Re(a)
Ve

Arg(2) == tan™*(cos(Im(a) log(12)) + tan"*(Re(2), Im(2)) Re(a)), sin(Im(a) log(|z)) + tan"*(Re(2), IM(2)) Re(@)))
Re(Z) == |2” cosaArg(2) /; a€ R

2 & -, Im(2)? !
ReZ) =)' ——— — (1-Reto) [;)] /iaeR
j=01=0 (I = j)!j! (%)J 4(Re(-1)

Re(Z%) == [Z%0® Mm@t (Re2.Im@) coqf Im(a) log(|2)) + Re(a) tan™ (Re(2), Im(2))
Im(Z) = |z2 sin(aArg(2) /; ac R

IM(Z%) == [ZRe@ Mm@ tan " (Re2.Im@) §in(1m(a) log(|2)) + Re(a) tan " (Re(2), Im(2))
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2=/ Ay £

7 = |77 exp(-Arg(2) Im(@) - i (Im(@) log(|2)) + Arg(2) Re(@)))

7 == |7RE@ Mm@ tar"1<Re<z>~'f“@))(cos(l m(a) log(|z)) + Re(@) tan*(Re(2), Im(2))) — i sin(Im(a) log(|z)) + Re(@) tan(Re(2), Im(2))))
sgn(#) == exp(aRe(log(2)) /; iae R

sgn(@) =12%/;iaeR

sgNn(Z%) == Z* exp(—Re(alog(2)))

sgn(Z) = 12"'™@ exp(i Re(a) tan"*(Re(2), Im(2)))

sgn(z%) == exp(i (Im(a) log(12) + Arg(z) Re(@))).

Similar identities can be derived for the exponent functions, such as:

Arged=Im@ /;-r<Im@ <

Arg(e?) == — (7 — Im(2)) mod (2 )

Arg(e'?) = n - (= — Re(z)) mod (2 7).

Some arithmetical operations involving complex components or elementary functions of complex components are:
1z1] || == 1z 2]

1Z%=12/;aeR
2 21 2 2
[Z1]” + |22|° = > (lz - 2 + 12 + 2%

7= Arg(z)) - Arg(z)

Arg(z)) + Arg(z) = Arg(z1 ) - 2 >
Vs

Re(z1) + Re(z) == Re(z + )
Im(zy) + IM(2) == Im(z; + 2)
L+n=%+%
Ln=402%

2=7/acR

. z
et Argd __
rd

A2 = cos(Arg(2)) + i SIN(Arg(2))

. Im(2) Im(2) T n
AP - cos(tan’l( )) +i sjn(tan’l( )) /i —— < Arg(Re(2) < —.
Re(2) Re(2) 2 2

Complex characteristics
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The next two tables describe all the complex components applied to all complex components |z, Arg(2), Re(2),
Im(2), z, and sgn(2) at the pointszand z==x+iy/; xeR Ay e R:

z Abs Arg Re Im Conjugate
Abs 121 =12 |Arg(2)| == IRe(2)| = Im2)| = V Im(2)? 12 =12
|Z| |cos(Arg(2))| [Im(2)| =
\/ tan"'(Re(2), Im(2))° 12 Sin(Arg()|
Arg Arg(z)=0 |Arg(Arg(2) = Arg(Re(2) = Arg(Im(2)) = Arg(2) =
tan"1(Arg(2), 0) tan~1(Re(2), 0) tan~%(0, Im(2)) tan~1(Re(x), —Im(2))
Arg(Im(2) =
(1-6(lm2)) =
Re Re(|z) == |7 Re(Arg(2) == Arg(2) Re(Re(2)) == Re(2) Re(Im(2) = Im(2) Re&(2) == Re(2)
Im Im(|z)) ==0 Im(Arg(2) =0 Im(Re(2) == 0 Im(Im(2) == 0 Im(2) == -Im(2)
Conjugate |[Z == 2 Arg(2) = Arg(2) Re(2) = Re(2) Im(2) = Im(2) 2=2
. Arg(2) Re(2) Im(2) - z
Sign sgn(|z) =1/; |sgn(Arg(2) == —— | sgn(Re(2)) = —— | sgn(Im(2) == s == = /;z+ 0
z#0 V Arg? V Re(? v imez? :
X+iy/; Abs Arg Re Im Conjugate

xeRAyeR

Abs IX+iyll = x2+y? ||Arg(X+iy)| = Re(x+iy) =V X2 |[IMx+iy)|==vYy? |[[X+iyl=1 X

|/ e, Y’

Arg Arg(Ix+iy)=0 Arg(Argix+iy) = |Arg(Rex+iy) == |Arg(Imx+iy)) == |Arg(2) == -Arg(

tan"}(tan(x, y), 0) | tan"'(x, 0) tan~'(y, 0) Arg(2) £ 1

ArglRe[x+iyll=|Arg(Im(x+iy)) ==
A-UnitStep[xDx | L-6y)n

Re Re(x+iy]) = Re(Arg(x+1iy)) == Re(Re(x+iy)) ==X |Re(Imx+iy) =y |[Re(X+iy)=X
[y 4 V2 tan"'(x, y)
Im Im(x+iy])==0 ImArgx+iy) =0 |[Im(Rex+iy)=0 |Im(ImX+iy)=0 [IMmX+iy)=—
Conjugate X+iyl==v X2 +y® |Argx+iy)= Re(X+1iy) ==X Im(X+iy)==y X+iy=X+iy
tan(x, y)
Sign sgn(Ix+iy)=1/; |sgn(Arg(x+iy)) == |sgn(Re(x+iy))==|sgn(Im(x+iy))== |sgn(X+iy)==
X+iy+0 tanL(xy) SoN(X) = —= sgn(y) = —— Xy
‘/X—z \/? V X+y?
N tanLxy)?

Differentiation

The derivatives of five complex components |x|, Re(x), Im(x), X, and sgn(x) at the real point x € R can be inter-
preted in areal-analytic or distributional sense and are given by the following formulas:
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X

where 6(x) isthe Dirac delta function.

It isimpossible to make a classical, direction-independent interpretation of these derivatives for complex values of
variable x because the complex components do not fulfill the Cauchy-Riemann conditions.

Indefiniteintegration

The indefinite integrals of some complex components at the real point x € R can be represented by the following
formulas:

XX
f|x|dx=: —_—
2

fsgn(x) dx=|X|.

Definiteintegration

The definite integrals of some complex components in the complex plane can also be represented through complex
components, for example:

v4
f It dt ==z Im(2)? + Re(2)?
-z
z |z z
f|t|dt:: —
0 2

f sgn(t) dt==0
-z

f ngn(t)dt = \/? .
0

Some definite integrals including absolute values can be easily evaluated, for example (in the Hadamard sense of
integration, the next identity is correct for all complex values of n):
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1 1 2
ff X=y"dxdy= ———/; Re(n) > -2.
0 Jo N+ (n+2)

Integral transforms

Fourier integral transforms of the absolute value and signum functions |t| and sgn(t) can be evaluated through
generalized functions:

21
FAlN@=-,/ - —
T Z

2 1
FN@ =~ - =
T A
21
Fallll@ =-,/ = —
Tz
T
Fsll@ =~/ - /@

Vs
Falsgn(H)] (2) = ,/ > 8(2)

2
Fsilsgn®)] (2 = | —

/e

Laplaceintegral transforms of these functions can be evaluated in a classical sense and have the following values:

N | -

1
Lt @ = —
v

1
Li[sgn(®)] (2) == ;

Differential equations

The absolute value function |x| for real x € R satisfies the following simple first-order differential equation under-
standable in a distributional sense:

W (X) == Sign(W(X)) /; W(X) == |X].
In asimilar manner:

W(x) =1/; W(X) == Re(x)

W (X) == 0/; W(X) == Im(X)

W (X) == 27 6(X) /; W(X) == Arg(x).

Inequalities
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All six complex components |z, Arg(2), Re(2), Im(2), z and sgn(2) satisfy numerous inequalities. The best known
are so-called triangle inequalities for absolute values:

|1 + 2| < |z4] + |25

n n
D= lad
k=1 k=1

Some other inequalities can be described by the following formulas:

121 - 2| = l|lz1] = |2

1zl -1zl <121 + 2| < 21| + |Z]
|Arg(2| < 7

IRe(2)l < 17

lIm(z)| < |2

Re(sgn(2) < 1

Im(sgn(2) < 1

Isgn(z)| =< 1.

Zeros

The six complex components |z, Arg(2), Re(2), Im(2), z, and sgn(2) have the set of zeros described by the following
formulas:

|Z2=0/;z=0
Arg2==0/;zeRAz>0
Re(z==0/;ize R
Im2==0/;zeR
z==0/;2=0

sgn(z)==0/; z==0.

Applications of complex components

All six complex components are used throughout mathematics, the exact sciences, and engineering.
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