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Introductions to HarmonicNumber2
Introduction to the differentiated gamma functions

General

Almost simultaneously with the development of the mathematical theory of factorials, binomials, and gamma
functions in the 18th century, some mathematicians introduced and studied related special functions that are
basicaly derivatives of the gamma function. These functions appeared in coefficients of the series expansions of
the solutions in the logarithmic cases of some important differential equations. They appear in the Bessel differen-
tial equation for example. So functions in this group are called the differentiated gamma functions.

The harmonic numbers Hy (Hy =1, Hp =1+ % Hy==1+ % + % Hy==1+ %+ % + 1 ...) for integer n have a
very long history. The famous Pythagoras of Samos (569-475B.C.) was the first to encounter the harmonic series
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in connection with string vibrations and his special interest in music.

Richard Suiseth (14th century) and Nicole d’ Oresme (1350) studied the harmonic series and discovered that it
diverges. Pietro Mengoli (1647) proved the divergence of the harmonic series. Nicolaus Mercator (1668) studied
the harmonic series corresponding to the series of log (1 + 2) and Jacob Bernoulli (1689) again proved the diver-
gence of the harmonic series. The harmonic numbers H, with integer n also appeared in an article of G. W. Leibniz
(1673).

In his famous work, J. Stirling (1730) not only found the asymptotic formulafor factorial n!, but used the digamma
psi function y(2) (related to the harmonic numbers), which is equa to the derivative of the logarithm from the
gamma function (y(2) == dlog(I'(2)) /dz). Later L. Euler (1740) also used harmonic numbers and introduced the
generalized harmonic numbers H.".

The digamma function (z) and its derivatives v (2) of positive integer orders n were widely used in the research

of A. M. Legendre (1809), S. Poisson (1811), C. F. Gauss (1810), and others. M. A. Stern (1847) proved the
convergence of the Stirling series for the digamma function:
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At the end of the 20th century, mathematicians began to investigate extending the function ™ (2) to all complex
values of n (B. Ross (1974), N. Grossman (1976)). R. W. Gosper (1997) defined and studied the cases n == -2 and
—3. V. S. Adamchik (1998) suggested the definition ¢™(2) for complex n using Liouville's fractional integration
operator. A natural extension of ¥ (2) for the complex order n==v was recently suggested by O. |. Marichev

(2001) during the development of subsections with fractional integro-differentiation for the Wolfram Functions
website and the technical computing system Mathematica:
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Definitions of the differentiated gamma functions

The digamma function (), polygamma function "’ (z), harmonic number H,, and generalized harmonic number

H." are defined by the following formulas (the first formulais a general definition for complex arguments and the
second formulais for positive integer arguments):
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Here y isthe Euler gamma constant y == 0.577216 ....:
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Remark: This formula presents the (not unique) continuation of the classical definition of ¥"(z) from positive
integer values of v to its arbitrary complex values.

For positiveinteger n and arbitrary complex z, r, the following definitions are commonly used:
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The previous definition for H§” uses the Mathematica definition for the Hurwitz zeta function {(r, 2). Branch cuts
and related properties are thus inherited from £(r, 2).

The previous functions are interconnected and belong to the differentiated gamma functions group. These functions
are widely used in the coefficients of series expansions for many mathematical functions (especially the so-called
logarithmic cases).

A quick look at the differentiated gamma functions

Hereisaquick look at the graphics for the differentiated gamma functions along the real axis.
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Connections within the group of differentiated gamma functions and with other function
groups

Representationsthrough more general functions

The differentiated gamma functions y/(2), ¥ (2), H,, and H{" are particular cases of the more general hypergeomet-
ric and Meijer G functions. Although the arguments of these functions do not depend on the variable z, it is
included in their parameters.

For example, ¥/(2), ¥"(2), H,, and H§” can be represented through generalized hypergeometric functions .1 Fp by
the following formulas:
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The aforementioned general formulas can be rewritten using the classical Meijer G functions as follows:
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Representationsthrough related equivalent functions

The differentiated gamma functions (2), ¥ (2), H,, and H{" can be represented through derivatives of the gamma
function I'(2):
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The differentiated gamma functions (2), ¥ (2), Hz, and H" can also be represented through derivatives of the
logarithm of the gamma function logl'(2):

dlogr'(2)
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The functions ¥ (z) and H" are intimately related to the Hurwitz zeta function (s, a) and the Bernoulli polynomi-
als and numbers B(z+ 1), By, by the formulas:
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HY =20 -4, z+ 1)

Bml(n + 1) - Bml
H™ . ——  /meN"AneN.
m+1

Representations through other differentiated gamma functions

The differentiated gamma functions ¥/(2), ¥ (2), H,, and H{" are interconnected through the following formulas:

v =y
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The best-known properties and formulas for differentiated gamma functions
Real valuesfor real arguments

For real values of the argument z and nonnegative integer n, the differentiated gamma functions ¥(2), ¥ (2), H,

and H"” arereal (or infinity). The function H{" isreal (or infinity) for real values of argument z and integer n.

Simplevaluesat zero

The differentiated gamma functions ¥(z), ¥ (2), H,, and H."” have simple values for zero arguments:
Y(0) =
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y(0) = & /; Re(v) > -1
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M __
Hy' =0
HO ==z

Values at fixed points

The differentiated gamma functions ¥(2), ¥"(2), H,, and H."” with rational arguments can sometimes be evaluated
through classical constants and logarithms, for example:

Y(-1) =%
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Specific valuesfor specialized variables
The previous relations are particular cases of the following general formulas:
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The differentiated gamma functions y’(z) and H." with integer parameters v and r have the following representa-
tions:

Y@ = logl'(2)
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Hy =0
H” =1
HY =1+27"

HY =1+27"+3.

Analyticity

The digamma function ¢(z) and the harmonic number H, are defined for al complex values of the variable z. The
functions " (z) and HY" are analytical functions of r and z over the whole complex r- and z-planes. For fixed z, the
generalized harmonic number H{" is an entire function of .

Poles and essential singularities

The differentiated gamma functions ¥(2) and H, have an infinite set of singular points z== —k, where k € N for ¥(2)
and k e N* for H,. These points are the simple poles with residues —1. The point z== ¢ is the accumulation point
of poles for the functions ¥(2), H,, and y"(2) (with fixed nonnegative integer v), which means that & is an essen-
tial singular point.

For fixed nonnegative integer v, the function ¢’(2) has an infinite set of singular points: z==-m/;v=0AmeN
are the smple poles with residues —1; and z==-m/; v > 0 A me N are the poles of order v + 1 with residues 0.

For fixed z, the function " (z) does not have poles and the function H{" has only one singular point at r = &,
which isan essentia singular point.

Branch pointsand branch cuts
The functions y(2) and H, do not have branch points and branch cuts.

For integer v, the function zp(v)(z) does not have branch points and branch cuts.

For fixed noninteger v, the function ™ (2) has two singular branch points z== 0 and z== &, and it is a single-
valued function on the z-plane cut along the interval (—co, 0), where it is continuous from above:

lim Y (x—i€e) =y (X /; x<0

2irx 1

——|/; x<0.
e—>+0 T —y)

lim yM(x—ie) == " [W(X) +
For fixed z, the functions () and H{" do not have branch points and branch cuts.
Periodicity

The differentiated gamma functions y(2), ¥ (2), H,, and H\" do not have periodicity.

Parity and symmetry
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The differentiated gamma functions ¥(2), ¥ (2), H,, and HY" have mirror symmetry:

W(2) =y (@

v@ =y

Seriesrepresentations

The differentiated gamma functions ¥/(z), H,, and H{" have the following series expansions near regular points:

Y(2) o Y(2Zg) + (2, 20) (- 20) = {(3, 20) 2~ 20)* + ... [; @> Z) N~ (=g € Z N 25 < 0)
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Near singular points, the differentiated gamma functions ¥(2), ¥ (2), H,, and H{"” can be expanded through the
following series:

1 2z o
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Here y isthe Euler gamma constant y == 0.577216.....

Except for the generalized power series, there are other types of series through which differentiated gamma func-
tions¥(2), ¥ (2), Hz, and H” can be represented, for example:
& 1

1
Z)==——+12Z - -
va o K+ (k+z+1) 7

10
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y"V(@) = (=" n! /ineNt
kZ=;‘ (k+2™*t
& 1
Hz == ZZ —_—
o K+ (k+z+1)
H ::i[i - ]/- Re(r) > 1.
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Asymptotic series expansions

The asymptotic behavior of the differentiated gamma functions (2), ¥ (2), H,, and HY" can be described by the
following formulas (only the main terms of the asymptotic expansions are given):

1 1 1
U2 «<clogd - — - —— (1 + O(—]) /A9 <t A (12 = o)
2z 127 Z

D™ -D! (D! (=DM (n+ !
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1
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1
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Integral representations

The differentiated gamma functions y(2), ¥"(2), H,, and H{" can also be represented through the following
equivaent integrals:

11—t
¥(2 ::f dt—y/;Re(2>0
o 1-t

(et (t+1)72
U(2) ::f [__ . ]dt/; Re(z) > 0
0

t

—t e—zl

zp(z::foo _ dt-vy/;Re(2 >0
0 l-et

—e

-t v v

w1
Y(2) = f [ ¢ — (-t e Q(-v, 0, -t2) |dt - ’ /iRe(2) >0
0 1-et(I1-v ra-v
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dt/;neN* ARe(2) >0

—t
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0
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w[ef (t+ 1)-2-1]
Z::f —— dt+v/;Re(2 > -1
0 t t

o gt _ p-@ Dt
HZ::f — dt/;Re(2)> -1
0 1-e¢t
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(r=1! 1-¢t
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Transformations

The following formulas describe some of the transformations that change the differentiated gamma functions into
themselves:

1
W(=2) = yY(2) + mcot(n 2) + —
z

1
Y(z+1) =¥+ 2

n-1

1
nj) == —/ineN
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1
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Yz-1) = (@)~

/ineN
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1
k=0 Z
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Y= = D"y + Nz 4 (D" x ineN

YO+ D =y"@+ D"z ineN

m-1 1
yOz+m) =y @+ (-1"n!

/ineN
o (z+ k™t

yOz-1)=y"@-(D"nt@-)""/ineN

m
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i e
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1
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z

1
Hzpp = Hz + _Z+ 1
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no1
Hniz == Hz+z—/;nEN

o k+z
1
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z
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Hyn= HZ_Z_/; neN
02—k
) r-1 g r —r (_l)bJ_l (2ﬂ)r
HO = ()" THO + (-1 2" + — B —76 1+
HY =HO + ——
U ze 1y
n
Hiin = HY + - /ineN
a1 (k+2
1
" __
Hzr—l - Hg) - ;
n-1
HO, = HY - /ineN.
kZ:; (z-k'

n 0 lcot(zn) .
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Transformations with arguments that are integer multiples take the following forms:

1 1
¥(22)=109(2) + > (w[u E) + w(Z)]

m-1

k
¥(m2) == log(m) + — Zw[z+ —] /;imeN*
m m

k=0

1
Y@ =2 (l//(”)(z) v zﬁ(”)(z+ 5)) et

m-1 k
y™(mz) = m"?! Zw(”)[z+ —) ineNt AmeN*
m

k=0

1
HZZ == 5 (H27% + Hz) + |Og(2)

m-1

Hmg = — ZHzl +log(m) /; me N*
m& T

HY == 2" (Hgf_)l + H“)l) +27 7" +(1-2"") () /; Re(2) > 0
21

2

m-1
Hig=m > HY, +(1-m) £/ Re@ > 0Ame N,
k=0 m
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The following transformations represent summation theorems:
1
U(2) + w(z+ E) ==2y(22) - 2log(2)

1
Y@ + w(")(u 5] =2"1y"27) /ineN*

H,+ Hz+l =2H5,1— 2|Og(2)
2

1
HY +HY, = 2" H) , +(2-2)40) [, Re@) > - >

2

| dentities
The differentiated gamma functions ¥/(2), ¥ (2), H,, and H." satisfy the following recurrence identities:

1
Y@ =yz+1) - >

1
V@ =yz-D+ —
z-1

Y@=y z+D-(-D"nlz"t/;neN

Y@ =yVz-D+ D" nlz-) " /;ineN
1

Hy==Hzy - —

z+1

1
Hy==H, 1+ -
z

(U]
Hg) == Hz+l -

N _— (r) l
HZ __H ]+—.

The previous formulas can be generalized to the following recurrence identities with ajump of length n:

n-1

1
== — — /; N
Y2 =y(z+n) kE:02+k/ ne

n g
Y@ =y@z-m+y — ineN
o Z-k

m-1
Y@ =y z+m - (-"nt Y
k=0 (Z+K)

/ineN

n+1



http: //functions.wolfram.com

m

V0@ =y"z-m+-n"nt Y

 (z— k™

/ineN

n
Hz=Hzn- ) — /;neN
o Z+k
n-1
H,=H,,+ —/ineN
z z-n kZ(;Z_k

n

H = HY), - ;neN
z z+n kzz:l; (Z + k)r
n-1 1
HY = HY, + /ineN.
E;(z—kf

Representations of derivatives

The derivatives of the differentiated gamma functions ¥/(2), ¥ (2), H,, and H." have rather simple representations:

(2
— =97
0z
v)
oW (2 )
0z
2
aHz - ﬂ_ _ H§2)
0z 6
AHM
=r({r+1)—HD
il &)

AHY " log(k)
= - ; /ineN
or e

The corresponding symbolic n'"-order derivatives of all the differentiated gamma functions y(2), v (2), H,, and
HQ” can be expressed by the following formulas:

"Y(2)
=y"@/;ineN
87"
M@
=y /;meN
oz"
O"H

aznz = (-D"n! (HMY - Z(n+ 1)) /;neN*

"HY
oz

=60+ (D" (), (HMY = 2n+1)) /;neN
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O"Hy ™ log'(k)
T (D6 + (DD —— imeNT AneN.
ar" = K

Applications of differentiated gamma functions

Applications of differentiated gamma functions include discrete mathematics, number theory, and calculus.
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