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Introductions to Pochhammer
Introduction to the factorials and binomials

General

The factorials and binomials have a very long history connected with their natural appearance in combinatorial
problems. Such combinatorial-type problems were known and partially solved even in ancient times. The first
mathematical descriptions of binomial coefficients arising from expansions of (a+ b)" for n==2, 3, 4, ... appeared
in the works of ChiaHsien (1050), al-Kargji (about 1100), Omar a-Khayyami (1080), Bhaskara Acharya (1150), al-
Samaw'al (1175), Yang Hui (1261), Tshu shi Kih (1303), Shih—Chieh Chu (1303), M. Stifel (1544), Cardano
(1545), Scheubel (1545), Peletier (1549), Tartaglia (1556), Cardan (1570), Stevin (1585), Faulhaber (1615), Girard
(1629), Oughtred (1631), Briggs (1633), Mersenne (1636), Fermat (1636), Wallis (1656), Montmort (1708), and
De Moivre (1730). B. Pascal (1653) gave a recursion relation for the binomial, and |I. Newton (1676) studied its
cases with fractional arguments.

It was known that the factorial n! grows very fast. Its growth speed was estimated by J. Stirling (1730) who found
the famous asymptotic formula for the factorial named after him. A special role in the history of the factorial and
binomial belongs to L. Euler, who introduced the gamma function I'(2) as the natural extension of factorial
(n!=T(n+ 1)) for noninteger arguments and used notations with parentheses for the binomials (1774, 1781). C. F.
Hindenburg (1779) used not only binomials but introduced multinomials as their generalizations. The modern
notation n! was suggested by C. Kramp (1808, 1816). C. F. Gauss (1812) also widely used binomialsin his mathe-

matical research, but the modern binomial symbol (E) was introduced by A. von Ettinghausen (1826); later

Forstemann (1835) gave the combinatorial interpretation of the binomial coefficients.

A. L. Crelle (1831) used a symbol that notates the generalized factoria a(a+1)(@+2)...(a+n—-1). Later P. E.
Appell (1880) ascribed the name Pochhammer symbol for the notation of this product because it was widely used
in the research of L. A. Pochhammer (1890).

While the double factorial n!! was introduced long ago, its extension for complex arguments was suggested only
several years ago by J. Keiper and O. |. Marichev (1994) during the implementation of the function Fact ori al 2
in Mathematica.

The classical combinatorial applications of the factorial and binomial functions are the following:

e Thefactorial n! givesthe number of possible placements of n people on n chairs.

e The binomial ( ) gives the number of possible selections of k numbers from alarger group of n numbers, for

instance on alotto strip.
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e Themultinomial (n; ny, Ny, ..., Ny) isthe number of ways of putting n==n; + Ny + ... Ny, different objects into
m different boxes with n, in the k" box, k==1, 2, ..., m.

Definitions of factorials and binomials

The factorial n!, double factorial n!!, Pochhammer symbol (a),,, binomial coefficient ( E) and multinomial coeffi-

cient (Ny + Ny +... + Ny Ny, Ny, ..., Ny) are defined by the following formulas. The first formula is a general
definition for the complex arguments, and the second oneis for positive integer arguments:

n'=I'(n+1)
n

n! ==l_[k/; neN*
k=1

5 %(1—(:08(7{ m) n
n!!::(—) 2m2 r(—+1)
b 2

T'@+n)

@p=——/(-(-a€ZA-a=0AneZAnx< -a))
r'@)
n-1
@n=[J@+k/inen*
k=0
n I'n+1) n!
( ): - L(-(heZAkeZAk=n<0)
K) Tk+D)Trin-k+1) k!(n-k!

(E)::O/;nel/\kel/\ksn<0

T(n+1) m
(N +No+ ...+ Ny Ny, Ny, Loy D) == —_— /i—neN* /\n::an
Hk:;]_ Iﬂ(nk"" 1) k=1

m
(M +N+...+Nm N, Ny, oo, N ==0/; —neN* /A n= > n,..
1 2 1, 112 K

k=1

Remark about values at special points: For @ = a and v == n integers with a < 0 andn < —a, the Pochhammer
symbol (@), cannot be uniquely defined by a limiting procedure based on the previous definition because the two
variables @ and v can approach the integers a and n with a < 0 and n < —a at different speeds. For such integers
witha < 0, n < —a, the following definition is used:

D" (-a!

@,=————/,—aeNAneZAn=<-a
(-a-n)!
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Similarly, for v = n, « == k negative integers with k < n, the binomial coefficient ( E) cannot be uniquely defined by
alimiting procedure based on the previous definition because the two variables v, « can approach negative integers
n, k with k < n at different speeds. For negative integers with k < n, the following definition is used:

(E)::O/;nel/\kez/\ksn<0.

The previous symbols are interconnected and belong to one group that can be called factorials and binomials.
These symbols are widely used in the coefficients of series expansions for the majority of mathematical functions.

A quick look at the factorials and binomials

Hereisaquick look at the graphics for the factorial the real axis.
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And here is a quick view of the bivariate binomial and Pochhammer functions. For positive arguments, both
functions are free of singularities. For negative arguments, the functions have a complicated structure with many
singularities.

0 2 4

Connections within the group of factorials and binomials and with other function groups

Representationsthrough more general functions

Two factorials n! and n!! are the particular cases of the incomplete gamma function I'(a, 2) with the second
argument being O:

n'=T(n+1,0)/; Re(n) > -1
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2 j—l(l—cos(n n)) n
n!!::(—) 2”/2r(—+1, o) /; Re(n) > —2.
s 2

Representationsthrough related equivalent functions

The factorial n!, double factorial n!!, Pochhammer symbol (a),, binomial coefficient ( E) and multinomial coeffi-

cient (N + Ny + ... + Ny Ny, Ny, ..., Ny) can be represented through the gamma function by the following formulas:

n'=Irn+1)

1
TS osEn-1)
nit == 2"/2(—]4 r(—+1)

2 2
I'a+n)
an::
I'(@)
-D)"rd-a
@y,=————/;ne”Z
rd-a-n
I'@a+n)
an::
I'(a)
-D"rd-a
@,=——""—/—/ine”Z
rd-a-n
(n) rn+1)
k) Tk+ HTL-k+n)
[(nh+1 ul
(M + Ny + .o+ Ny Ny, Ny, oy Ny == m(—+) i =neNT /\”==an-
[T T+ 1) k=1

Many of these formulas are used as the main elements of the definitions of many functions.
Representations through other factorials and binomials

The factorials and binomials n!, n!!, (a),, (E) and (ng + Nz + ... + Ny; N, Ny, ..., Ny) are interconnected by the

following formulas:

L (cos2nm-1-n _Zsind(nn)
n!==24 2 2mN
n'=(m-Ln!n!

n!= (D),

x %(cos(;rn)—l) n
n!!==2“/2(—) (—)!

2 2
1
bs = (cos(m n)—1)
nit = 2n2 (—)4 (n
2 2
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(m+n-1)!
(My=————/;-(-meNA-m-neN)

(m=1)!

(=1)"m!
(=m), == imeNAneN

(m-n)!

a+k-1 a+k-1
(a)k==kz( e )k'( o )

@ph=nl@-1+na-1,n)

n n!
(k)“ (n—=K) k!

n (1—k+n)k
(k)“ k!

(n)__ (K+ D)n g
k n=k!

ny  (=DF(=n)
( ) T X kez
k k!

") mn-k k
(k)“(”’”_ 0

n! m
(Mg + N + o+ iy Ny, My, oy M) == — '/;nzzznk
[Tz Ni! k=1
(nm+1)n7nm m
(N +Ny+ .o+ Ny Ny, Ny ooy M) 5= —————— n::an.
m-1 '
[Tz ! k=1

The best-known properties and formulas for factorials and binomials

Real valuesfor real arguments

n
For real values of arguments, the values of the factorials and binomials n!, n!!, (a),, (k) and
(N + Ny + ... 4+ Nm; Ny, N, ..., Ny) arereal (or infinity).

Simplevalues at zero

n
The factorials and binomials n!, n!!, (a),, ( ) and (Ng + Ny + ... + Npy; Ny, Ny, ..., Ny) have simple values for zero

k
arguments:
0r=1
on=1

(O)O =
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o)

0;0=1
0;0,0,..0=1

@p=1

1n

0)_p= /ineN*

n!

0),==0/;neN*

o)

(0) sin(k )
K kr

Values at fixed points

Students usually learn the following basic table of values of the factorialsn! and n!! in special integer points:

-Dl=&
01==1
1=
21==2
31=6
(-2 =&
-Dit=1
0!l =
1=
211=2
3n=3
4n=s

Specific valuesfor specialized variables

If variable nisarationa or integer number, the factorials n! and n!! can be represented by the following general
formulas:

(-N)!=&/;neN"*
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1 n
[E+n)!:_ p!l_[(p+kq)/;neN/\peN*/\qu*/\p<q

n

q kel

P D" P
[——n]!::n——!/;neN/\peN*/\qu*/\p<q
q [Tes ka—q-p) 4

(—2K)!! = & /: ke N*
k

@k =[]2iskeN
j=1

(k! =2%k! /;keN
k
k-1 ==]_[(2j ~1/:keN.
j=1
For some particular values of the variables, the Pochhammer symbol (a),, has the following meanings:

(a)l =a

(@z=a@+1)

no1
A =| |—/ineN'
@ ]k:!a_k/ e
@p=—""F
@-1@-2
1
(a)_l-—a

[ 1) 2n-2)!

2 B 221 (n— 1!
[1) 2n-1!
2 2oy
D, =nl.

Some well-known formulas for binomia and multinomial functions are:

n
(k):o/;—keW\/k—neN+
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(n; n) ==

n1+n2)

(nl + Ny, Ng, nz) == ( n
2

Analyticity
n
The factorials and binomials n!, n!!, (a),, (

k

values of their variables. The factorials, binomias, and multinomials are analytical functions of their variables and
do not have branch cuts and branch points. The functions n! and n!! do not have zeros: n! # 0; n!! £ 0. Therefore,
thefunctions1/n! and 1/n!! are entire functions with an essential singular point at z = .

), and (ny + Ny + ... + Ny; N, Ny, ..., Ny) are defined for all complex

Poles and essential singularities

n
The factorials and binomias n!, n!!, (a),, ( k)’ and (N1 + N + ... 4+ Niy; Ny, Ny, ..., Ny) have an essentia singularity

for infinite values of any argument. This singular point is also the point of convergence of the poles (except k = &
n
for ( K )).

The function n! has an infinite set of singular points: n==-k/; ke N* are the simple poles with residues
=D/ (k=D).

The function n!! has an infinite set of singular points: n== -2k /; k—1 € N* are the simple poles with residues
-/ (2k-2m).

For fixed a, the function (a),, has an infinite set of singular points: n==—-a -k /; k e N are the simple poles with
residues (- 1) / (k! T'(@)).

For fixed n, the function (a),, has an infinite set of singular points: a== -k —n/; ke N are the simple poles with
residues (-1 / (k! T(-n=K)) /; k+n & N.

n
k
residues (1) /(j1k! (=j -k / k& Z.

For fixed k, the function ( ) has an infinite set of singular points: n==—j /; j € N* are the simple poles with

By variable ny, 1 < k < m, (with the other variables fixed) the function (ny + N + ... + Ny; Ny, Ny, ..., Ny) has an
infinite set of singular points: ne == —Ny — j /; j € N* are the simple poles with residues

DI /(0L § = N T T + DT T+ D (= DY) /5 N = 2t ne + 3N ne /\ e N
Periodicity
The factorials and binomiasn!, n!!, (a),, ( E) and (Ny + Ny + ... + N; Ny, Ny, ..., Ny) do not have periodicity.

Parity and symmetry
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n
Thefactorialsand binomialsn!, n!!, (a),, ( K

), and (Ny + No + ... + Ny, Ny, Ny, ..., Ny) have mirror symmetry:

m=n!
nl=n!l

(@n = (@

My +Ny+ ... +Ny; N, Ny, oo, N = (N + Ny + ... + Ny Ny, Ny, L.y D).
The multinomial (ny + Ny + ... + Nm; Ny, Ny, ..., Ny) has permutation symmetry:
(N + Np; Ng, N2) == (N + Nz; Nz, Ny)

(M + M+ .+ N+ N+ Ny Ny, Mg, N e Ny e, D) ==

(N M+ 0+ M+ Nl N, Mg, e, NG, i e, i) /5 e A K
Seriesrepresentations

The factorials n!, n!!, and (a),, have the following series expansions in the regular points:

1
n! o n0!(1+;[/(n0+1) (N—ng) + 5(¢r(n0+ DZ+yD (g + 1)) (n—ng)® + ...)/; (n—>ng) A—ng ¢ N*

1

n!! o n ”(1+—(Io (4)+21//(—0+1)+ lo (—)sin(n ))(n—n)+ )/'(n—m)/\——oe;EN+
o H T /s R
o g g o o o

@pocT(Ma+I(N @) +yai+.../;(@a-0)

n
@), = Z(—l)k”‘ g9a/ineN

k=0

(&) o

n 1 2 2 1 2
(1+(w(b+ m - y(o) @-b+ - (WD =2y +ny(b) +yb+n” —yPb) +yPb+n)@-b + ...]/;
{a—- b}
n k K ) )
@y = %Z(—n“" P ( J. )bJ @-b*'/inen.
= ]:0
The series expansions of n! and n!! near singular points are given by the following formulas:

(_ l)m—l
(m—1)!

n! o«

1 1
( +(m) + = (3y(m)? + 2% = 3yP(m) (n+m) + ...)/; (n—>-mAmeN*
n+m 6
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(_ 1)m—1 zl—m
(m-1)!

n!! o

1 1 1
( + = (log(2) + y(m) + — (310g*(2) + 72 + 3Y(m)? + 7% log(8) — 372 log(x) + log(64) y(m) — 3y (m)
n+2m 2 24
(n+2m)+ ...)/; n—--2m AmeN*,
Asymptotic series expansions

n
The asymptotic behavior of the factorials and binomials n!, n!!, (a),, (k) and(Ny + Ny + ... + Ny Ny, Ny, ..., Ny

can be described by the following formulas (only the main terms of asymptotic expansion are given). The first is
the famous Stirling's formula:

novV2n n”*%e (1+O( D/ |Arg(n)| < A (In] > o0)

2 (l—cos(;rn)) n+1 n 1
n!!oc(— Vrinze 2(1+O(—])/; JArg(n)] < A (In] - o)
Vs n
(n n 1
(@) +O[—2D /s (lal = ) A |Arga+n)| <n
a
1
(@), e na*““[l + o( )) /(| > o) A |Arg@a+n)| <«
I'@) n

n nk 1
( )oc (1+O(—)) /; (INj = o) AJArgin+ 1| <n
k) I'k+1) n

( n ) C(n+ 1) sin(r (k—n)) k™1

1
K (1+O( ))/ (k] » 00) A JArglk —n)| < 7

T

ngt
Ny + Ny + ... + N Ny, Ny, ...,nm)oc—(l+0( ))/ (N » o0) [\ a= ) ng+1/\|Argla+ny)| <.
Hkmzz l“(nk + 1) /\ g /\

Integral representations

Thefactorial n! and binomial ( E) can also be represented through the following integrals:

n!::f t"etdt/;neN
0

1
n!::flog( )dt/ Re(n) > -1

- k
nz:f [e“ Z( )]t”clt/ meN* A-m-1<Ren) <-m
0 k!

k=0
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) ( 1)k

_ n -t
nt= ft dt+zk'(k+n+l)

n 1
( )_f k(14 ¢ dt;keRk>-1ANER,
k 2n

Transformations

The following formulas describe some of the main types of transformations between and among factorials and

binomials:
7T CSC(7r N)
(=n!==
(n=1)!

n+D!'=mn+21)n!
n+m!=(n+21),n!

n!
n=1)!=—

=1™n!

n-—m!= /imeZ

(_n)m

=t (7)
n-2)n\2

N+ =(Mn+2)n!!

cosz( n?ﬂ)

={3)

n
(n+2m)!!==2m(§+1) n';mez

m
n!!
(-2 =—
n
(=pm2=mni
(n-2mit=————/mez
(-2
mlra+j+k
(@krmn == (@ nfnnl_[( ] /smeN
j=0 n

m-1 b+k
(am+h), ::m”l_[[a+ —] /imeN*,
k=0 mjz

Some of these transformations can be called addition formulas, for example:

(a+ by, = Z( V() @+ R s(biinen
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N (@) (D)
(a+b)n==n!2¥/;neN
o Kl(n=k)!
(@men = @m @+ M),

Multiple argument transformations are, for example:

22" 1
@2n)! = (n—l)!(n——)!
\/— 2

T

1 1-m M1

mn!=nm""z22mnz2 n[—+n—1]!/; me N*
k=0 \M
Lsn2nn
| —=— 2N 32 —_D'"'n!
2n!t =2 n=!"n!
Ve

1
1 1m 7 Z(l—m+cos(mnn)) m-1/9k
mm!t=nm: " 2% (_) n —+n-2!'/;meN*

2 kol m

1
(2@),,=2°" (@), (a+ _) .
2/n

The following transformations are for products of the functions:
n!(-n)! = nxcsc(nm)

(m+n)!
m+n
e
n!

H =M+ 1) _n

n'm! ==

m!n!
— =B(mMm+1,n+1)
(m+n+1)!

o) cso(n”)
2
1 men (2 %(2—cos(mn)—ooinn)) m+n
men (_) 2
2
2

i rm {2\ (GOSMM—costn) o
& (5 e
2

T
(=mni = n(—)
2

nttm! == !

T

—+1n

2

m!an 1 (703 (Cosmmcostnm—costx (M+m)-1) n
_mtnt 4 FLITLIS
Mm+n+2)!! 2 2 2



http: //functions.wolfram.com 13

I dentities

Thefactorialsn! and n!! can be defined as the solutions of the following corresponding functional equations:
f(m=nfin-1)/ fm=nlgmAgm=gn-HAfD) =1

fm=nfn-2)/ fm=nltgm) Agnm) =gn-2 A f(1)=1

The factoria n! is the unique nonzero solution of the functional equation f(n) == n f(n— 1) that is logarithmically
convex for al real n > 0; that is, for which log(f(n)) is a convex function for n > 0.

The factorials and binomias n!, n!!, (a),, (n

k)’ and (N + Ny + ... + Ny Ny, Ny, ..., Ny satisfy the following recur-

rence identities:

1
n'=——(n+1!

n+1
n!'=n(n-1)!
1
nt'=——mn+2)!!
n+2
n'=n(n-2)!

1
@ = E @-Dpyq

(a)n =a@+ 1)n—1

a
(@ = — (@+1),
a+n

@ = @a-1),
a-1
1
@n = —— @1
a+n

(@n = (@+n-1) (@)1

(n) ﬂ—k+l(n+1)
k)7 n+1 \k

()=l
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n|+l
Ny + Ny + ... + Ny Nq, nz,...,nm)zzﬁ(nl+nz+...+nm+l; Ny, No, ooy, N, M+ 1, Ngq, ooy N
N+
j=1""]
ern:lnj
Ny + N2+ ...+ Nm; Ny, Ny, ..., Ny) == - (Ng+NMo+...+Np—21,n, Ny, oo, NZg, N =1, Nppq, .oy D).
|

The previous formulas can be generalized to the following recurrence identities with ajump of length n:

nt= " (=NpM-m!/mez

2Mn+2m!!
n'==— /'meZ

G+,

n
n!!==(—1)m2m(—5) (n—2mll ;meZ

m

I@a+mT@+n)

@,= ———(a+m),
r@r@a+m+n)
I'a-myI'(@a+n)

@p=—"—"——(@-m),
r@r@a-m+n)

T'@a+n)

@n=———@ntm
'@+ m+n)

I'@a+n)
(@) == m @n-m

() oo o)

K n+1), \K
[n)__ (n—m+1)m(n—m)
k)" (n-m+1), \K

(n) (k+ D (n )
k)" (n-m-k+1), \k+m
(n) (n—k+1)m (n )
k) (k-m+1), \k-m
(i +1),

Ny +Np+...4+Nm N, Ny, ooy M) == ————— N+ N+ ...+ N+ P; Ny, N, oo, N2y, NP+ P, Niggy -0, N)

(Zrzlnj+1)

P

(N +Ny+ ...+ Ny Ng, Ny, ..y Ny) ==

1 m
an —p+1f (Ng+Ny+...+Nm=P;Ng, Ny, ooy Mg, N = P, Mg, ey Ny
(n|_p+l)p j=1 m
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n
The Pochhammer symbol (a),, and binomial ( k) satisfy the following functional identities:
D"
@ = ineZ
(1 - a)—n
1
a), == a-my,
(@n @a—mn ( Dnem

(a)n = (a)m (a+ m)n—m

(e)=(n-e)

(0wt

Representations of derivatives

n
The derivatives of the functions n!, n!!, (a),, (k

representations that include the corresponding functions as factors:

), and(nNy + Ny + ... + Ny Ny, Ny, ..., Ny) have rather simple

on!
— =nly(n+1)
an

on!! 1 1 [1oac2 n 1 nl 2\ .
E——En..[og( )+l//(£+ )+E Og[;)sn(nﬂ'))
d(@)n

— = (@n W@+n) —y¥(@)
oa

(@)
—— = (a)yyY@+n
on

()
()

n
—= ::(k)(l//(l—k+n)—¢r(k+l))

n
==(k)(w(n+1)—z//(n—k+1))

O+ Ny + ...+ Nm; Ny, Ny, ...y Ny)

=Ny + Ny + ...+ N Ny, Ny, ..y N N+ D) — (N + 1) /; n::an.
0Ny k=1

n
The symbolic derivatives of the n" order form factorials and binomias n!, n!!, (a),, (k) and

(N + Ny + ... + Nm; Ny, Ny, ..., Ny) have much more complicated representations, which can include recursive

function calls, regularized generalized hypergeometric functions m,2Fm;1, or Stirling numbers S¥:
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omn!
— =T+ HRm n+ 1 ;RM 2 =y@RM-1,2)+ ROYm-1,2 A\ RO, 2=1/\men

M@, LH"mIT@+n™t
= m2Fme1(@, @, o, am N+ L+ L a+1, ..., a0+ 1 1) /;

gam I'(=n)
a1::a2::,,,::am+1=:a+n/\m€N+/\n$N
(@ n
m” ::Z(_l)k”‘ SO k-m+1),a™/;meNAneN
oa ]
()
k (=)™ sin(r k) m! .
= rn+ D)™ oFma(@, @, ..., am K+ Lag+1, ap+1, ..., anua + L, 1) /;
n n
aI::a2:=~-~=:ain+1=:n+1/\m€N+/\k$N+
()
k) 1& m
— :k_Z(-l)“kéK (G-m+1),A-k+n) ™ meN" AkeN*
n !
om "
okm = Tk=1)
m oy (M= o T(k—n))
Z(j )Sll’{ﬂ'( > +k—n))]!m2Fm+1(a1, A, ..., Mg+l a+l ...,an1+1; 1)[— )/;
j=0 d

a1::a2::.”::a{ml::k—n/\mEN+

Mg+ N+ ...+ Ny Ny, Ny, Loy DY)

u
ong,

(=D u! T(s+ 1)+t

— woFui(@, @, oo 8y, S—Mm+ Lag+ L & +1, .., a0+ 1 1)/
nk:J_ r(nk + 1) Iﬂ(nm -9

Q ==ay==...== y;1 ==S+1/\S==ink/\ueN+/\S—nmeEN.
k=1

Applications of factorials and binomials

Applications of factorials and binomials include combinatorics, number theory, discrete mathematics, and calculus.
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