Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











AiryAi






Mathematica Notation

Traditional Notation









Bessel-Type Functions > AiryAi[z] > Integration > Definite integration > Involving the direct function





http://functions.wolfram.com/03.05.21.0084.01









  


  










Input Form





Integrate[AiryAi[x]/(x - z), {x, -Infinity, Infinity}] == I Pi (AiryAi[z] + (I/(6 Pi)) (2 Pi AiryBi[z] - 6 z^2 Hypergeometric0F1[4/3, z^3/9] HypergeometricPFQ[{1/3}, {2/3, 4/3}, z^3/9] + 3 z^2 Hypergeometric0F1[2/3, z^3/9] HypergeometricPFQ[{2/3}, {4/3, 5/3}, z^3/9])) /; Im[z] > 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubsuperscriptBox["\[Integral]", RowBox[List["-", "\[Infinity]"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List["AiryAi", "[", "x", "]"]], RowBox[List["x", "-", "z"]]], RowBox[List["\[DifferentialD]", "x"]]]]]], "\[Equal]", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["AiryAi", "[", "z", "]"]], " ", "+", " ", RowBox[List[FractionBox["I", RowBox[List["6", " ", "\[Pi]"]]], RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Pi]", " ", RowBox[List["AiryBi", "[", "z", "]"]]]], "-", RowBox[List["6", " ", SuperscriptBox["z", "2"], " ", RowBox[List["Hypergeometric0F1", "[", RowBox[List[FractionBox["4", "3"], ",", FractionBox[SuperscriptBox["z", "3"], "9"]]], "]"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", FractionBox["1", "3"], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["2", "3"], ",", FractionBox["4", "3"]]], "}"]], ",", FractionBox[SuperscriptBox["z", "3"], "9"]]], "]"]]]], "+", RowBox[List["3", " ", SuperscriptBox["z", "2"], " ", RowBox[List["Hypergeometric0F1", "[", RowBox[List[FractionBox["2", "3"], ",", FractionBox[SuperscriptBox["z", "3"], "9"]]], "]"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", FractionBox["2", "3"], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["4", "3"], ",", FractionBox["5", "3"]]], "}"]], ",", FractionBox[SuperscriptBox["z", "3"], "9"]]], "]"]]]]]], ")"]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["Im", "[", "z", "]"]], ">", "0"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <mo> &#8747; </mo> <mrow> <mo> - </mo> <mi> &#8734; </mi> </mrow> <mi> &#8734; </mi> </msubsup> <mrow> <mfrac> <mrow> <mi> Ai </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> <mrow> <mi> x </mi> <mo> - </mo> <mi> z </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> x </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> Ai </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mi> &#8520; </mi> <mtext> </mtext> </mrow> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 6 </mn> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 0 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mo> &#8202; </mo> <mo> ; </mo> <mfrac> <mn> 4 </mn> <mn> 3 </mn> </mfrac> <mo> ; </mo> <mfrac> <msup> <mi> z </mi> <mn> 3 </mn> </msup> <mn> 9 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;0&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[&quot;\[Null]&quot;, InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[FractionBox[&quot;4&quot;, &quot;3&quot;], Hypergeometric0F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1, Rule[Editable, False]], &quot;;&quot;, TagBox[FractionBox[SuperscriptBox[&quot;z&quot;, &quot;3&quot;], &quot;9&quot;], Hypergeometric0F1, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric0F1] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> <mo> ; </mo> <mrow> <mfrac> <mn> 2 </mn> <mn> 3 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 4 </mn> <mn> 3 </mn> </mfrac> </mrow> <mo> ; </mo> <mfrac> <msup> <mi> z </mi> <mn> 3 </mn> </msup> <mn> 9 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;1&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;2&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[TagBox[FractionBox[&quot;1&quot;, &quot;3&quot;], HypergeometricPFQ, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;2&quot;, &quot;3&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;4&quot;, &quot;3&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[FractionBox[SuperscriptBox[&quot;z&quot;, &quot;3&quot;], &quot;9&quot;], HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 0 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mo> &#8202; </mo> <mo> ; </mo> <mfrac> <mn> 2 </mn> <mn> 3 </mn> </mfrac> <mo> ; </mo> <mfrac> <msup> <mi> z </mi> <mn> 3 </mn> </msup> <mn> 9 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;0&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[&quot;\[Null]&quot;, InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[FractionBox[&quot;2&quot;, &quot;3&quot;], Hypergeometric0F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1, Rule[Editable, False]], &quot;;&quot;, TagBox[FractionBox[SuperscriptBox[&quot;z&quot;, &quot;3&quot;], &quot;9&quot;], Hypergeometric0F1, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric0F1] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 1 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 2 </mn> <mn> 3 </mn> </mfrac> <mo> ; </mo> <mrow> <mfrac> <mn> 4 </mn> <mn> 3 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 5 </mn> <mn> 3 </mn> </mfrac> </mrow> <mo> ; </mo> <mfrac> <msup> <mi> z </mi> <mn> 3 </mn> </msup> <mn> 9 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;1&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;2&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[TagBox[FractionBox[&quot;2&quot;, &quot;3&quot;], HypergeometricPFQ, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;4&quot;, &quot;3&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;5&quot;, &quot;3&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[FractionBox[SuperscriptBox[&quot;z&quot;, &quot;3&quot;], &quot;9&quot;], HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mi> Bi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &gt; </mo> <mn> 0 </mn> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <int /> <bvar> <ci> x </ci> </bvar> <lowlimit> <apply> <times /> <cn type='integer'> -1 </cn> <infinity /> </apply> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <ci> AiryAi </ci> <ci> x </ci> </apply> <apply> <power /> <apply> <plus /> <ci> x </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <imaginaryi /> <pi /> <apply> <plus /> <apply> <ci> AiryAi </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <times /> <cn type='integer'> 6 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -6 </cn> <apply> <ci> Hypergeometric0F1 </ci> <cn type='rational'> 4 <sep /> 3 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 9 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='rational'> 1 <sep /> 3 </cn> </list> <list> <cn type='rational'> 2 <sep /> 3 </cn> <cn type='rational'> 4 <sep /> 3 </cn> </list> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 9 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> Hypergeometric0F1 </ci> <cn type='rational'> 2 <sep /> 3 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 9 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='rational'> 2 <sep /> 3 </cn> </list> <list> <cn type='rational'> 4 <sep /> 3 </cn> <cn type='rational'> 5 <sep /> 3 </cn> </list> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 9 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> <apply> <ci> AiryBi </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <gt /> <apply> <imaginary /> <ci> z </ci> </apply> <cn type='integer'> 0 </cn> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubsuperscriptBox["\[Integral]", RowBox[List["-", "\[Infinity]"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List["AiryAi", "[", "x_", "]"]], RowBox[List["x_", "-", "z_"]]], RowBox[List["\[DifferentialD]", "x_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["AiryAi", "[", "z", "]"]], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[Pi]", " ", RowBox[List["AiryBi", "[", "z", "]"]]]], "-", RowBox[List["6", " ", SuperscriptBox["z", "2"], " ", RowBox[List["Hypergeometric0F1", "[", RowBox[List[FractionBox["4", "3"], ",", FractionBox[SuperscriptBox["z", "3"], "9"]]], "]"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", FractionBox["1", "3"], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["2", "3"], ",", FractionBox["4", "3"]]], "}"]], ",", FractionBox[SuperscriptBox["z", "3"], "9"]]], "]"]]]], "+", RowBox[List["3", " ", SuperscriptBox["z", "2"], " ", RowBox[List["Hypergeometric0F1", "[", RowBox[List[FractionBox["2", "3"], ",", FractionBox[SuperscriptBox["z", "3"], "9"]]], "]"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", FractionBox["2", "3"], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["4", "3"], ",", FractionBox["5", "3"]]], "}"]], ",", FractionBox[SuperscriptBox["z", "3"], "9"]]], "]"]]]]]], ")"]]]], RowBox[List["6", " ", "\[Pi]"]]]]], ")"]]]], "/;", RowBox[List[RowBox[List["Im", "[", "z", "]"]], ">", "0"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2003-08-21





© 1998-2014 Wolfram Research, Inc.