Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











AiryAi






Mathematica Notation

Traditional Notation









Bessel-Type Functions > AiryAi[z] > Integral transforms > Laplace transforms





http://functions.wolfram.com/03.05.22.0006.01









  


  










Input Form





LaplaceTransform[AiryAi[-t], t, z] == (1/(18 Pi z^2)) (E^(z^3/3) (-6 Pi (-2 z^2 + z (z^3)^(1/3) + (z^3)^(2/3)) + 3^(5/6) z^4 ExpIntegralE[1/3, z^3/3] Gamma[1/3] + 3 3^(1/6) z^3 ExpIntegralE[2/3, z^3/3] Gamma[2/3]))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["LaplaceTransform", "[", RowBox[List[RowBox[List["AiryAi", "[", RowBox[List["-", "t"]], "]"]], ",", "t", ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["18", " ", "\[Pi]", " ", SuperscriptBox["z", "2"]]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox["z", "3"], "3"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "6"]], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["z", " ", SuperscriptBox[RowBox[List["(", SuperscriptBox["z", "3"], ")"]], RowBox[List["1", "/", "3"]]]]], "+", SuperscriptBox[RowBox[List["(", SuperscriptBox["z", "3"], ")"]], RowBox[List["2", "/", "3"]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["3", RowBox[List["5", "/", "6"]]], " ", SuperscriptBox["z", "4"], " ", RowBox[List["ExpIntegralE", "[", RowBox[List[FractionBox["1", "3"], ",", FractionBox[SuperscriptBox["z", "3"], "3"]]], "]"]], " ", RowBox[List["Gamma", "[", FractionBox["1", "3"], "]"]]]], "+", RowBox[List["3", " ", SuperscriptBox["3", RowBox[List["1", "/", "6"]]], " ", SuperscriptBox["z", "3"], " ", RowBox[List["ExpIntegralE", "[", RowBox[List[FractionBox["2", "3"], ",", FractionBox[SuperscriptBox["z", "3"], "3"]]], "]"]], " ", RowBox[List["Gamma", "[", FractionBox["2", "3"], "]"]]]]]], ")"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mi> &#8466; </mi> <mi> t </mi> </msub> <mo> [ </mo> <mrow> <mi> Ai </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mi> t </mi> </mrow> <mo> ) </mo> </mrow> <mo> ] </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 18 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mfrac> <msup> <mi> z </mi> <mn> 3 </mn> </msup> <mn> 3 </mn> </mfrac> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mn> 3 </mn> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 6 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> E </mi> <annotation encoding='Mathematica'> TagBox[&quot;E&quot;, ExpIntegralE] </annotation> </semantics> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> </msub> <mo> ( </mo> <mfrac> <msup> <mi> z </mi> <mn> 3 </mn> </msup> <mn> 3 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mn> 3 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mroot> <mn> 3 </mn> <mn> 6 </mn> </mroot> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> E </mi> <annotation encoding='Mathematica'> TagBox[&quot;E&quot;, ExpIntegralE] </annotation> </semantics> <mfrac> <mn> 2 </mn> <mn> 3 </mn> </mfrac> </msub> <mo> ( </mo> <mfrac> <msup> <mi> z </mi> <mn> 3 </mn> </msup> <mn> 3 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mn> 2 </mn> <mn> 3 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mroot> <msup> <mi> z </mi> <mn> 3 </mn> </msup> <mn> 3 </mn> </mroot> </mrow> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <msup> <mi> z </mi> <mn> 3 </mn> </msup> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> / </mo> <mn> 3 </mn> </mrow> </msup> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> LaplaceTransform </ci> <apply> <ci> AiryAi </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> t </ci> </apply> </apply> <ci> t </ci> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 18 </cn> <pi /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 5 <sep /> 6 </cn> </apply> <apply> <ci> ExpIntegralE </ci> <cn type='rational'> 1 <sep /> 3 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <cn type='rational'> 1 <sep /> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='rational'> 1 <sep /> 6 </cn> </apply> <apply> <ci> ExpIntegralE </ci> <cn type='rational'> 2 <sep /> 3 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 3 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6 </cn> <pi /> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <cn type='rational'> 1 <sep /> 3 </cn> </apply> </apply> <apply> <power /> <apply> <power /> <ci> z </ci> <cn type='integer'> 3 </cn> </apply> <cn type='rational'> 2 <sep /> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["LaplaceTransform", "[", RowBox[List[RowBox[List["AiryAi", "[", RowBox[List["-", "t_"]], "]"]], ",", "t_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox["z", "3"], "3"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "6"]], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["z", " ", SuperscriptBox[RowBox[List["(", SuperscriptBox["z", "3"], ")"]], RowBox[List["1", "/", "3"]]]]], "+", SuperscriptBox[RowBox[List["(", SuperscriptBox["z", "3"], ")"]], RowBox[List["2", "/", "3"]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["3", RowBox[List["5", "/", "6"]]], " ", SuperscriptBox["z", "4"], " ", RowBox[List["ExpIntegralE", "[", RowBox[List[FractionBox["1", "3"], ",", FractionBox[SuperscriptBox["z", "3"], "3"]]], "]"]], " ", RowBox[List["Gamma", "[", FractionBox["1", "3"], "]"]]]], "+", RowBox[List["3", " ", SuperscriptBox["3", RowBox[List["1", "/", "6"]]], " ", SuperscriptBox["z", "3"], " ", RowBox[List["ExpIntegralE", "[", RowBox[List[FractionBox["2", "3"], ",", FractionBox[SuperscriptBox["z", "3"], "3"]]], "]"]], " ", RowBox[List["Gamma", "[", FractionBox["2", "3"], "]"]]]]]], ")"]]]], RowBox[List["18", " ", "\[Pi]", " ", SuperscriptBox["z", "2"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.