html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 JacobiCS

 http://functions.wolfram.com/09.27.16.0039.01

 Input Form

 JacobiCS[InverseJacobiND[z, m], m]^2 == (1 + (m - 1) z^2)/(z^2 - 1)

 Standard Form

 Cell[BoxData[RowBox[List[SuperscriptBox[RowBox[List["JacobiCS", "[", RowBox[List[RowBox[List["InverseJacobiND", "[", RowBox[List["z", ",", "m"]], "]"]], ",", "m"]], "]"]], "2"], "\[Equal]", FractionBox[RowBox[List["1", "+", RowBox[List[RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]], SuperscriptBox["z", "2"]]]]], RowBox[List[" ", RowBox[List[SuperscriptBox["z", "2"], "-", "1"]]]]]]]]]

 MathML Form

 cs ( nd - 1 ( z m ) m ) 2 ( m - 1 ) z 2 + 1 z 2 - 1 JacobiCS InverseJacobiND z m m 2 m -1 z 2 1 z 2 -1 -1 [/itex]

 Rule Form

 Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", SuperscriptBox[RowBox[List["JacobiCS", "[", RowBox[List[RowBox[List["InverseJacobiND", "[", RowBox[List["z_", ",", "m_"]], "]"]], ",", "m_"]], "]"]], "2"], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["1", "+", RowBox[List[RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]], " ", SuperscriptBox["z", "2"]]]]], RowBox[List[SuperscriptBox["z", "2"], "-", "1"]]]]]]]

 Date Added to functions.wolfram.com (modification date)

 2007-05-02