| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/09.19.02.0001.02 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | WeierstrassInvariants[{Subscript[\[Omega], 1], Subscript[\[Omega], 3]}] == 
  {60 Sum[If[{m, n} == {0, 0}, 0, 1/(2 m Subscript[\[Omega], 1] + 
         2 n Subscript[\[Omega], 3])^4], {m, -Infinity, Infinity}, 
     {n, -Infinity, Infinity}], 
   140 Sum[If[{m, n} == {0, 0}, 0, 1/(2 m Subscript[\[Omega], 1] + 
         2 n Subscript[\[Omega], 3])^6], {m, -Infinity, Infinity}, 
     {n, -Infinity, Infinity}]} /; 
 Im[Subscript[\[Omega], 3]/Subscript[\[Omega], 1]] != 0 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["WeierstrassInvariants", "[", RowBox[List["{", RowBox[List[SubscriptBox["\[Omega]", "1"], ",", SubscriptBox["\[Omega]", "3"]]], "}"]], "]"]], "\[Equal]", RowBox[List["{", RowBox[List[RowBox[List["60", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["n", "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List["If", "[", RowBox[List[RowBox[List[RowBox[List["{", RowBox[List["m", ",", "n"]], "}"]], "\[Equal]", RowBox[List["{", RowBox[List["0", ",", "0"]], "}"]]]], ",", "0", ",", FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "m", " ", SubscriptBox["\[Omega]", "1"]]], "+", RowBox[List["2", "n", " ", SubscriptBox["\[Omega]", "3"]]]]], ")"]], "4"]]]], "]"]]]]]]]], ",", RowBox[List["140", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["n", "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List["If", "[", RowBox[List[RowBox[List[RowBox[List["{", RowBox[List["m", ",", "n"]], "}"]], "\[Equal]", RowBox[List["{", RowBox[List["0", ",", "0"]], "}"]]]], ",", "0", ",", FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "m", " ", SubscriptBox["\[Omega]", "1"]]], "+", RowBox[List["2", "n", " ", SubscriptBox["\[Omega]", "3"]]]]], ")"]], "6"]]]], "]"]]]]]]]]]], "}"]]]], "/;", RowBox[List[RowBox[List["Im", "[", FractionBox[SubscriptBox["\[Omega]", "3"], SubscriptBox["\[Omega]", "1"]], "]"]], "\[NotEqual]", "0"]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <mo> { </mo>  <mrow>  <mrow>  <msub>  <mi> g </mi>  <mn> 2 </mn>  </msub>  <mo> ( </mo>  <mrow>  <msub>  <mi> ω </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> ω </mi>  <mn> 3 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> , </mo>  <mrow>  <msub>  <mi> g </mi>  <mn> 3 </mn>  </msub>  <mo> ( </mo>  <mrow>  <msub>  <mi> ω </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> ω </mi>  <mn> 3 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> } </mo>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mo> { </mo>  <mrow>  <mrow>  <mn> 60 </mn>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <munder>  <mrow>  <mi> m </mi>  <mo> , </mo>  <mtext>   </mtext>  <mrow>  <mi> n </mi>  <mo> = </mo>  <mrow>  <mo> - </mo>  <mi> ∞ </mi>  </mrow>  </mrow>  </mrow>  <mrow>  <mrow>  <mo> { </mo>  <mrow>  <mi> m </mi>  <mo> , </mo>  <mi> n </mi>  </mrow>  <mo> } </mo>  </mrow>  <mo> ≠ </mo>  <mrow>  <mo> { </mo>  <mrow>  <mn> 0 </mn>  <mo> , </mo>  <mn> 0 </mn>  </mrow>  <mo> } </mo>  </mrow>  </mrow>  </munder>  <mi> ∞ </mi>  </munderover>  <mfrac>  <mn> 1 </mn>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> m </mi>  <mo> ⁢ </mo>  <msub>  <mi> ω </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> n </mi>  <mo> ⁢ </mo>  <msub>  <mi> ω </mi>  <mn> 3 </mn>  </msub>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 4 </mn>  </msup>  </mfrac>  </mrow>  </mrow>  <mo> , </mo>  <mrow>  <mn> 140 </mn>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <munder>  <mrow>  <mi> m </mi>  <mo> , </mo>  <mtext>   </mtext>  <mrow>  <mi> n </mi>  <mo> = </mo>  <mrow>  <mo> - </mo>  <mi> ∞ </mi>  </mrow>  </mrow>  </mrow>  <mrow>  <mrow>  <mo> { </mo>  <mrow>  <mi> m </mi>  <mo> , </mo>  <mi> n </mi>  </mrow>  <mo> } </mo>  </mrow>  <mo> ≠ </mo>  <mrow>  <mo> { </mo>  <mrow>  <mn> 0 </mn>  <mo> , </mo>  <mn> 0 </mn>  </mrow>  <mo> } </mo>  </mrow>  </mrow>  </munder>  <mi> ∞ </mi>  </munderover>  <mfrac>  <mn> 1 </mn>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> m </mi>  <mo> ⁢ </mo>  <msub>  <mi> ω </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> n </mi>  <mo> ⁢ </mo>  <msub>  <mi> ω </mi>  <mn> 3 </mn>  </msub>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mn> 6 </mn>  </msup>  </mfrac>  </mrow>  </mrow>  </mrow>  <mo> } </mo>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <mi> Im </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <msub>  <mi> ω </mi>  <mn> 3 </mn>  </msub>  <msub>  <mi> ω </mi>  <mn> 1 </mn>  </msub>  </mfrac>  <mo> ) </mo>  </mrow>  <mo> ≠ </mo>  <mn> 0 </mn>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> FormBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> RowBox </ci>  <list>  <ms> { </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> g </ms>  <ms> 2 </ms>  </apply>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> ω </ms>  <ms> 1 </ms>  </apply>  <ms> , </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> ω </ms>  <ms> 3 </ms>  </apply>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  <ms> , </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> g </ms>  <ms> 3 </ms>  </apply>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> ω </ms>  <ms> 1 </ms>  </apply>  <ms> , </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> ω </ms>  <ms> 3 </ms>  </apply>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  </list>  </apply>  <ms> } </ms>  </list>  </apply>  <ms> ⩵ </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> { </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> 60 </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> ErrorBox </ci>  <apply>  <ci> UnderoverscriptBox </ci>  <ms> ∑ </ms>  <apply>  <ci> UnderscriptBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <ms> m </ms>  <ms> , </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> n </ms>  <ms> = </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> - </ms>  <ms> ∞ </ms>  </list>  </apply>  </list>  </apply>  </list>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> RowBox </ci>  <list>  <ms> { </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> m </ms>  <ms> , </ms>  <ms> n </ms>  </list>  </apply>  <ms> } </ms>  </list>  </apply>  <ms> ≠ </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> { </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> 0 </ms>  <ms> , </ms>  <ms> 0 </ms>  </list>  </apply>  <ms> } </ms>  </list>  </apply>  </list>  </apply>  </apply>  <ms> ∞ </ms>  </apply>  </apply>  <apply>  <ci> FractionBox </ci>  <ms> 1 </ms>  <apply>  <ci> SuperscriptBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> RowBox </ci>  <list>  <ms> 2 </ms>  <ms> m </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> ω </ms>  <ms> 1 </ms>  </apply>  </list>  </apply>  <ms> + </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> 2 </ms>  <ms> n </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> ω </ms>  <ms> 3 </ms>  </apply>  </list>  </apply>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  <ms> 4 </ms>  </apply>  </apply>  </list>  </apply>  </list>  </apply>  <ms> , </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> 140 </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> UnderoverscriptBox </ci>  <ms> ∑ </ms>  <apply>  <ci> UnderscriptBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <ms> m </ms>  <ms> , </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> n </ms>  <ms> = </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> - </ms>  <ms> ∞ </ms>  </list>  </apply>  </list>  </apply>  </list>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> RowBox </ci>  <list>  <ms> { </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> m </ms>  <ms> , </ms>  <ms> n </ms>  </list>  </apply>  <ms> } </ms>  </list>  </apply>  <ms> ≠ </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> { </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> 0 </ms>  <ms> , </ms>  <ms> 0 </ms>  </list>  </apply>  <ms> } </ms>  </list>  </apply>  </list>  </apply>  </apply>  <ms> ∞ </ms>  </apply>  <apply>  <ci> FractionBox </ci>  <ms> 1 </ms>  <apply>  <ci> SuperscriptBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> RowBox </ci>  <list>  <ms> 2 </ms>  <ms> m </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> ω </ms>  <ms> 1 </ms>  </apply>  </list>  </apply>  <ms> + </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> 2 </ms>  <ms> n </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> ω </ms>  <ms> 3 </ms>  </apply>  </list>  </apply>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  <ms> 6 </ms>  </apply>  </apply>  </list>  </apply>  </list>  </apply>  <ms> } </ms>  </list>  </apply>  </list>  </apply>  <ms> /; </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> RowBox </ci>  <list>  <ms> Im </ms>  <ms> ( </ms>  <apply>  <ci> FractionBox </ci>  <apply>  <ci> SubscriptBox </ci>  <ms> ω </ms>  <ms> 3 </ms>  </apply>  <apply>  <ci> SubscriptBox </ci>  <ms> ω </ms>  <ms> 1 </ms>  </apply>  </apply>  <ms> ) </ms>  </list>  </apply>  <ms> ≠ </ms>  <ms> 0 </ms>  </list>  </apply>  </list>  </apply>  <ci> TraditionalForm </ci>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["WeierstrassInvariants", "[", RowBox[List["{", RowBox[List[SubscriptBox["\[Omega]_", "1"], ",", SubscriptBox["\[Omega]_", "3"]]], "}"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["60", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["n", "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List["If", "[", RowBox[List[RowBox[List[RowBox[List["{", RowBox[List["m", ",", "n"]], "}"]], "\[Equal]", RowBox[List["{", RowBox[List["0", ",", "0"]], "}"]]]], ",", "0", ",", FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "m", " ", SubscriptBox["\[Omega]\[Omega]", "1"]]], "+", RowBox[List["2", " ", "n", " ", SubscriptBox["\[Omega]\[Omega]", "3"]]]]], ")"]], "4"]]]], "]"]]]]]]]], ",", RowBox[List["140", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["n", "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List["If", "[", RowBox[List[RowBox[List[RowBox[List["{", RowBox[List["m", ",", "n"]], "}"]], "\[Equal]", RowBox[List["{", RowBox[List["0", ",", "0"]], "}"]]]], ",", "0", ",", FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "m", " ", SubscriptBox["\[Omega]\[Omega]", "1"]]], "+", RowBox[List["2", " ", "n", " ", SubscriptBox["\[Omega]\[Omega]", "3"]]]]], ")"]], "6"]]]], "]"]]]]]]]]]], "}"]], "/;", RowBox[List[RowBox[List["Im", "[", FractionBox[SubscriptBox["\[Omega]\[Omega]", "3"], SubscriptBox["\[Omega]\[Omega]", "1"]], "]"]], "\[NotEqual]", "0"]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |