Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











WeierstrassPPrime






Mathematica Notation

Traditional Notation









Elliptic Functions > WeierstrassPPrime[z,{g2,g3}] > Representations through equivalent functions > With related functions > Involving theta functions





http://functions.wolfram.com/09.14.27.0008.01









  


  










Input Form





WeierstrassPPrime[z, {Subscript[g, 2], Subscript[g, 3]}] == (-(Pi^3/(4 Subscript[\[Omega], 1]^3))) ((EllipticTheta[2, (Pi z)/(2 Subscript[\[Omega], 1]), q] EllipticTheta[3, (Pi z)/(2 Subscript[\[Omega], 1]), q] EllipticTheta[4, (Pi z)/(2 Subscript[\[Omega], 1]), q] EllipticThetaPrime[1, 0, q]^3)/(EllipticTheta[2, 0, q] EllipticTheta[3, 0, q] EllipticTheta[4, 0, q] EllipticTheta[1, (Pi z)/(2 Subscript[\[Omega], 1]), q]^3))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["WeierstrassPPrime", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox[SuperscriptBox["\[Pi]", "3"], RowBox[List["4", SubsuperscriptBox["\[Omega]", "1", "3"]]]]]], " ", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["EllipticTheta", "[", RowBox[List["2", ",", FractionBox[RowBox[List["\[Pi]", " ", "z"]], RowBox[List["2", SubscriptBox["\[Omega]", "1"]]]], ",", "q"]], "]"]], " ", RowBox[List["EllipticTheta", "[", RowBox[List["3", ",", FractionBox[RowBox[List["\[Pi]", " ", "z"]], RowBox[List["2", SubscriptBox["\[Omega]", "1"]]]], ",", "q"]], "]"]], " ", RowBox[List["EllipticTheta", "[", RowBox[List["4", ",", FractionBox[RowBox[List["\[Pi]", " ", "z"]], RowBox[List["2", SubscriptBox["\[Omega]", "1"]]]], ",", "q"]], "]"]], " ", SuperscriptBox[RowBox[List["EllipticThetaPrime", "[", RowBox[List["1", ",", "0", ",", "q"]], "]"]], "3"]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["EllipticTheta", "[", RowBox[List["2", ",", "0", ",", "q"]], "]"]], " ", RowBox[List["EllipticTheta", "[", RowBox[List["3", ",", "0", ",", "q"]], "]"]], " ", RowBox[List["EllipticTheta", "[", RowBox[List["4", ",", "0", ",", "q"]], "]"]], " ", SuperscriptBox[RowBox[List["EllipticTheta", "[", RowBox[List["1", ",", FractionBox[RowBox[List["\[Pi]", " ", "z"]], RowBox[List["2", SubscriptBox["\[Omega]", "1"]]]], ",", "q"]], "]"]], "3"]]], ")"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> &#8472; </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <msup> <mi> &#960; </mi> <mn> 3 </mn> </msup> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msubsup> <mi> &#969; </mi> <mn> 1 </mn> <mn> 3 </mn> </msubsup> </mrow> </mfrac> </mrow> <mo> &#8290; </mo> <mfrac> <mrow> <mrow> <msub> <mi> &#977; </mi> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msub> <mi> &#969; </mi> <mn> 1 </mn> </msub> </mrow> </mfrac> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> &#977; </mi> <mn> 3 </mn> </msub> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msub> <mi> &#969; </mi> <mn> 1 </mn> </msub> </mrow> </mfrac> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> &#977; </mi> <mn> 4 </mn> </msub> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msub> <mi> &#969; </mi> <mn> 1 </mn> </msub> </mrow> </mfrac> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <msubsup> <mi> &#977; </mi> <mn> 1 </mn> <mo> &#8242; </mo> </msubsup> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mrow> <mrow> <mrow> <msub> <mi> &#977; </mi> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> &#977; </mi> <mn> 3 </mn> </msub> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msub> <mi> &#977; </mi> <mn> 4 </mn> </msub> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <msub> <mi> &#977; </mi> <mn> 1 </mn> </msub> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msub> <mi> &#969; </mi> <mn> 1 </mn> </msub> </mrow> </mfrac> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mrow> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <apply> <partialdiff /> <list> <cn type='integer'> 1 </cn> </list> <ci> &#8472; </ci> </apply> <apply> <ci> CompoundExpression </ci> <ci> z </ci> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <pi /> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <ci> EllipticTheta </ci> <cn type='integer'> 2 </cn> <apply> <times /> <pi /> <ci> z </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> q </ci> </apply> <apply> <ci> EllipticTheta </ci> <cn type='integer'> 3 </cn> <apply> <times /> <pi /> <ci> z </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> q </ci> </apply> <apply> <ci> EllipticTheta </ci> <cn type='integer'> 4 </cn> <apply> <times /> <pi /> <ci> z </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> q </ci> </apply> <apply> <power /> <apply> <apply> <partialdiff /> <list> <cn type='integer'> 1 </cn> </list> <apply> <ci> Subscript </ci> <ci> &#977; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 0 </cn> <ci> q </ci> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <ci> EllipticTheta </ci> <cn type='integer'> 2 </cn> <cn type='integer'> 0 </cn> <ci> q </ci> </apply> <apply> <ci> EllipticTheta </ci> <cn type='integer'> 3 </cn> <cn type='integer'> 0 </cn> <ci> q </ci> </apply> <apply> <ci> EllipticTheta </ci> <cn type='integer'> 4 </cn> <cn type='integer'> 0 </cn> <ci> q </ci> </apply> <apply> <power /> <apply> <ci> EllipticTheta </ci> <cn type='integer'> 1 </cn> <apply> <times /> <pi /> <ci> z </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> &#969; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> q </ci> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["WeierstrassPPrime", "[", RowBox[List["z_", ",", RowBox[List["{", RowBox[List[SubscriptBox["g_", "2"], ",", SubscriptBox["g_", "3"]]], "}"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["\[Pi]", "3"], " ", RowBox[List["(", RowBox[List[RowBox[List["EllipticTheta", "[", RowBox[List["2", ",", FractionBox[RowBox[List["\[Pi]", " ", "z"]], RowBox[List["2", " ", SubscriptBox["\[Omega]", "1"]]]], ",", "q"]], "]"]], " ", RowBox[List["EllipticTheta", "[", RowBox[List["3", ",", FractionBox[RowBox[List["\[Pi]", " ", "z"]], RowBox[List["2", " ", SubscriptBox["\[Omega]", "1"]]]], ",", "q"]], "]"]], " ", RowBox[List["EllipticTheta", "[", RowBox[List["4", ",", FractionBox[RowBox[List["\[Pi]", " ", "z"]], RowBox[List["2", " ", SubscriptBox["\[Omega]", "1"]]]], ",", "q"]], "]"]], " ", SuperscriptBox[RowBox[List["EllipticThetaPrime", "[", RowBox[List["1", ",", "0", ",", "q"]], "]"]], "3"]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["4", " ", SubsuperscriptBox["\[Omega]", "1", "3"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["EllipticTheta", "[", RowBox[List["2", ",", "0", ",", "q"]], "]"]], " ", RowBox[List["EllipticTheta", "[", RowBox[List["3", ",", "0", ",", "q"]], "]"]], " ", RowBox[List["EllipticTheta", "[", RowBox[List["4", ",", "0", ",", "q"]], "]"]], " ", SuperscriptBox[RowBox[List["EllipticTheta", "[", RowBox[List["1", ",", FractionBox[RowBox[List["\[Pi]", " ", "z"]], RowBox[List["2", " ", SubscriptBox["\[Omega]", "1"]]]], ",", "q"]], "]"]], "3"]]], ")"]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.