Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site ContributeEmail CommentsSign the Guestbook

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











ExpIntegralE






Mathematica Notation

Traditional Notation









Gamma, Beta, Erf > ExpIntegralE[nu,z] > Continued fraction representations





http://functions.wolfram.com/06.34.10.0010.01









  


  










Input Form





ExpIntegralE[\[Nu], z] == z^(\[Nu] - 1) Gamma[1 - \[Nu]] - 1/(E^z (1 - \[Nu] + ContinueFraction[{(-1)^k (k/2)^((1 + (-1)^k)/2) ((k + 1)/2 - \[Nu])^((1 - (-1)^k)/2) z, 1 - \[Nu] + k}, {k, 1, Infinity}]))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["ExpIntegralE", "[", RowBox[List["\[Nu]", ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[SuperscriptBox["z", RowBox[List["\[Nu]", "-", "1"]]], RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Nu]"]], "]"]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "z"]]], "/", RowBox[List["(", RowBox[List["1", "-", "\[Nu]", "+", RowBox[List["ContinueFraction", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], SuperscriptBox[RowBox[List["(", FractionBox["k", "2"], ")"]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"]]], ")"]], "/", "2"]]], SuperscriptBox[RowBox[List["(", RowBox[List[FractionBox[RowBox[List["k", "+", "1"]], "2"], "-", "\[Nu]"]], ")"]], RowBox[List[" ", RowBox[List[RowBox[List["(", RowBox[List["1", "-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"]]], ")"]], "/", "2"]]]]], "z"]], ",", RowBox[List["1", "-", "\[Nu]", "+", "k"]]]], "}"]], ",", RowBox[List["{", RowBox[List["k", ",", "1", ",", "\[Infinity]"]], "}"]]]], "]"]]]], ")"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msub> <semantics> <mi> E </mi> <annotation encoding='Mathematica'> TagBox[&quot;E&quot;, ExpIntegralE] </annotation> </semantics> <mi> &#957; </mi> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <msup> <mi> z </mi> <mrow> <mi> &#957; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mtext> </mtext> <mfrac> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msup> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#957; </mi> <mo> + </mo> <msubsup> <mrow> <msub> <mi> &#922; </mi> <mi> k </mi> </msub> <mo> ( </mo> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mi> k </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#957; </mi> <mo> + </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 1 </mn> <mi> &#8734; </mi> </msubsup> </mrow> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> ExpIntegralE </ci> <ci> &#957; </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <apply> <apply> <ci> Subscript </ci> <ci> &#922; </ci> <ci> k </ci> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <power /> <apply> <times /> <ci> k </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> <ci> z </ci> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <ci> k </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <infinity /> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["ExpIntegralE", "[", RowBox[List["\[Nu]_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SuperscriptBox["z", RowBox[List["\[Nu]", "-", "1"]]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Nu]"]], "]"]]]], "-", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "z"]]], RowBox[List["1", "-", "\[Nu]", "+", RowBox[List["ContinueFraction", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", SuperscriptBox[RowBox[List["(", FractionBox["k", "2"], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"]]], ")"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[FractionBox[RowBox[List["k", "+", "1"]], "2"], "-", "\[Nu]"]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "-", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"]]], ")"]]]]], " ", "z"]], ",", RowBox[List["1", "-", "\[Nu]", "+", "k"]]]], "}"]], ",", RowBox[List["{", RowBox[List["k", ",", "1", ",", "\[Infinity]"]], "}"]]]], "]"]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29





© 1998- Wolfram Research, Inc.