
































Generalized power series
Expansions at generic point z==z_{0}
For the function itself
Expansions on branch cut
For the function itself
Expansions at z==0
For the function itself
General case
Expansions at z==1
For the function itself
General case
Logarithmic cases
The major terms in the general formula for expansions at z==1
Expansions at z==infinity
For the function itself
The general formulas
Case of simple poles
Case of poles of order r in the points a_{r}+k/;r ∈ {2,3} && k ∈ N
The major terms at z==infinity
Expansions at z==infinity for polynomial cases








HypergeometricPFQ[{},{},z]  HypergeometricPFQ[{},{b},z]  HypergeometricPFQ[{a},{},z]  HypergeometricPFQ[{a},{b},z]  HypergeometricPFQ[{a_{1}},{b_{1},b_{2}},z]  HypergeometricPFQ[{a_{1},a_{2}},{b_{1}},z]  HypergeometricPFQ[{a_{1},a_{2}},{b_{1},b_{2}},z]  HypergeometricPFQ[{a_{1},a_{2}},{b_{1},b_{2},b_{3}},z]  HypergeometricPFQ[{a_{1},a_{2},a_{3},a_{4}},{b_{1},b_{2},b_{3}},z]  HypergeometricPFQ[{a_{1},a_{2},a_{3},a_{4},a_{5}},{b_{1},b_{2},b_{3},b_{4}},z]  HypergeometricPFQ[{a_{1},a_{2},a_{3},a_{4},a_{5},a_{6}},{b_{1},b_{2},b_{3},b_{4},b_{5}},z]  HypergeometricPFQ[{a_{1},...,a_{p}},{b_{1},...,b_{q}},z]  

© 19982014 Wolfram Research, Inc.
