html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 HypergeometricPFQRegularized

Series representations

Generalized power series

Expansions at generic point z==z0

For the function itself

Expansions on branch cuts for p==q+1

For the function itself

Expansions at z==0

Expansions at z==1 for p==q+1

The general formulas

The logarithmic cases

The major terms in the general formula for expansions of function q+1F~q(a1,...,aq+1;b1,...,bq;z) at z==1

Expansions at z==infinity for p==q+1

The general formulas

Case of simple poles

Case of poles of order r in the points ar+k/;r ∈ {2,3,4} && kN

The major terms for expansions of function q+1F~q(a1,...,aq+1;b1,...,bq;z) at z==infinity

Expansions at z==infinity for polynomial cases

Asymptotic series expansions

Expansions for q==p

Expansions for q==p+1

Expansions for q>=p+2

Expansions for 0F2

Expansions for 0F3

General formulas of asymptotic series expansions

Main terms of asymptotic expansions

Residue representations